Arc Radius Calculator

Input the central angle of a sector (supports degrees or radians) and one of the following: arc length, chord length, or area. Quickly calculate the radius of the sector with accurate results.

Calculate Sector Radius

sector
Radius

What Is a Sector Radius?

The radius of a sector is the distance from the center of the circle to the edge of the sector. With the central angle \( \theta \) and one known parameter (arc length, chord length, or area), you can calculate the radius \( r \).

How to Calculate the Radius of a Sector

1. Given Arc Length \( L \):

If \( \theta \) is in degrees: \( r = \frac{L \times 360}{2 \pi \theta} \) If \( \theta \) is in radians: \( r = \frac{L}{\theta} \)

2. Given Chord Length \( c \):

Rearrange the chord length formula to solve for \( r \): \( r = \frac{c}{2 \sin\left(\frac{\theta}{2}\right)} \) If \( \theta \) is in degrees, convert it to radians: \( \theta_{\text{radians}} = \theta_{\text{degrees}} \times \frac{\pi}{180} \)

3. Given Area \( A \):

If \( \theta \) is in degrees: \( r = \sqrt{\frac{A \times 360}{\pi \theta}} \) If \( \theta \) is in radians: \( r = \sqrt{\frac{2A}{\theta}} \)

Examples

Example 1: Given the Central angle \( \theta = 90^\circ \) and Arc length \( L = 15 \), Find the Sector radius \( r \)

Solution:

\( r = \frac{15 \times 360}{2 \pi \times 90} \approx 9.55 \)

Result: Radius \( r \approx 9.55 \)

Example 2: Given the Central angle \( \theta = 1.2 \) radians and Area \( A = 20 \), Find the Sector radius \( r \)

Solution:

\( r = \sqrt{\frac{2 \times 20}{1.2}} \approx 5.77 \)

Result: Radius \( r \approx 5.77 \)