Arctangent Calculator

Enter a tangent value to calculate its corresponding angle in degrees and radians.

Calculate arctan(x)

Degrees

Radians

What is the Arctangent Function?

The arctangent function, also known as the inverse tangent function, is the reverse of the tangent function. It is typically denoted as \(\arctan(x)\) or \(\tan^{-1}(x)\). This function is used to find the angle corresponding to a specific tangent value. For the tangent function \(y = \tan(\theta)\), the arctangent is defined as: \( \theta = \arctan(x) \) Here: \(-\infty < x < \infty\), \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\). The range of the arctangent function is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\).

Examples

Example 1: Find the angle for \(\tan(\theta) = 1\)

Solution:

\( \theta = \arctan(1) = \frac{\pi}{4} \approx 0.7854 \, \text{radians} \)

The angle corresponding to a tangent value of 1 is \(\frac{\pi}{4}\) or 45°.

Example 2: Find the angle for \(\tan(\theta) = 0\)

Solution:

\( \theta = \arctan(0) = 0 \)

The angle corresponding to a tangent value of 0 is 0°.

Graph of the Arctangent Function

arctangent graph

The graph of the arctangent function is a smooth, monotonic curve that increases from \(-\infty\) to \(+\infty\). Its key characteristics are:

  • Domain: \((- \infty, +\infty)\)
  • Range: \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
  • Monotonicity: The arctangent function is strictly increasing across its domain.
  • Parity: The arctangent function is an odd function, satisfying \(\arctan(-x) = -\arctan(x)\), making it symmetric about the origin.

Arctangent Conversion Table

Tangent Value Degrees Radians
-57.28996163-89°\(\frac{-89\pi}{180}\)
-28.63625328-88°\(\frac{-22\pi}{45}\)
-19.08113669-87°\(\frac{-29\pi}{60}\)
-14.30066626-86°\(\frac{-43\pi}{90}\)
-11.4300523-85°\(\frac{-17\pi}{36}\)
-9.51436445-84°\(\frac{-7\pi}{15}\)
-8.14434643-83°\(\frac{-83\pi}{180}\)
-7.11536972-82°\(\frac{-41\pi}{90}\)
-6.31375151-81°\(\frac{-9\pi}{20}\)
-5.67128182-80°\(\frac{-4\pi}{9}\)
-5.14455402-79°\(\frac{-79\pi}{180}\)
-4.70463011-78°\(\frac{-13\pi}{30}\)
-4.33147587-77°\(\frac{-77\pi}{180}\)
-4.01078093-76°\(\frac{-19\pi}{45}\)
-3.73205081-75°\(\frac{-5\pi}{12}\)
-3.48741444-74°\(\frac{-37\pi}{90}\)
-3.27085262-73°\(\frac{-73\pi}{180}\)
-3.07768354-72°\(\frac{-2\pi}{5}\)
-2.90421088-71°\(\frac{-71\pi}{180}\)
-2.74747742-70°\(\frac{-7\pi}{18}\)
-2.60508906-69°\(\frac{-23\pi}{60}\)
-2.47508685-68°\(\frac{-17\pi}{45}\)
-2.35585237-67°\(\frac{-67\pi}{180}\)
-2.24603677-66°\(\frac{-11\pi}{30}\)
-2.14450692-65°\(\frac{-13\pi}{36}\)
-2.05030384-64°\(\frac{-16\pi}{45}\)
-1.96261051-63°\(\frac{-7\pi}{20}\)
-1.88072647-62°\(\frac{-31\pi}{90}\)
-1.80404776-61°\(\frac{-61\pi}{180}\)
-1.73205081-60°\(\frac{-\pi}{3}\)
-1.66427948-59°\(\frac{-59\pi}{180}\)
-1.60033453-58°\(\frac{-29\pi}{90}\)
-1.53986496-57°\(\frac{-19\pi}{60}\)
-1.48256097-56°\(\frac{-14\pi}{45}\)
-1.42814801-55°\(\frac{-11\pi}{36}\)
-1.37638192-54°\(\frac{-3\pi}{10}\)
-1.32704482-53°\(\frac{-53\pi}{180}\)
-1.27994163-52°\(\frac{-13\pi}{45}\)
-1.23489716-51°\(\frac{-17\pi}{60}\)
-1.19175359-50°\(\frac{-5\pi}{18}\)
-1.15036841-49°\(\frac{-49\pi}{180}\)
-1.11061251-48°\(\frac{-4\pi}{15}\)
-1.07236871-47°\(\frac{-47\pi}{180}\)
-1.03553031-46°\(\frac{-23\pi}{90}\)
-1-45°\(\frac{-\pi}{4}\)
-0.96568877-44°\(\frac{-11\pi}{45}\)
-0.93251509-43°\(\frac{-43\pi}{180}\)
-0.90040404-42°\(\frac{-7\pi}{30}\)
-0.86928674-41°\(\frac{-41\pi}{180}\)
-0.83909963-40°\(\frac{-2\pi}{9}\)
-0.80978403-39°\(\frac{-13\pi}{60}\)
-0.78128563-38°\(\frac{-19\pi}{90}\)
-0.75355405-37°\(\frac{-37\pi}{180}\)
-0.72654253-36°\(\frac{-\pi}{5}\)
-0.70020754-35°\(\frac{-7\pi}{36}\)
-0.67450852-34°\(\frac{-17\pi}{90}\)
-0.64940759-33°\(\frac{-11\pi}{60}\)
-0.62486935-32°\(\frac{-8\pi}{45}\)
-0.60086062-31°\(\frac{-31\pi}{180}\)
-0.57735027-30°\(\frac{-\pi}{6}\)
-0.55430905-29°\(\frac{-29\pi}{180}\)
-0.53170943-28°\(\frac{-7\pi}{45}\)
-0.50952545-27°\(\frac{-3\pi}{20}\)
-0.48773259-26°\(\frac{-13\pi}{90}\)
-0.46630766-25°\(\frac{-5\pi}{36}\)
-0.44522869-24°\(\frac{-2\pi}{15}\)
-0.42447482-23°\(\frac{-23\pi}{180}\)
-0.40402623-22°\(\frac{-11\pi}{90}\)
-0.38386404-21°\(\frac{-7\pi}{60}\)
-0.36397023-20°\(\frac{-\pi}{9}\)
-0.34432761-19°\(\frac{-19\pi}{180}\)
-0.3249197-18°\(\frac{-\pi}{10}\)
-0.30573068-17°\(\frac{-17\pi}{180}\)
-0.28674539-16°\(\frac{-4\pi}{45}\)
-0.26794919-15°\(\frac{-\pi}{12}\)
-0.249328-14°\(\frac{-7\pi}{90}\)
-0.23086819-13°\(\frac{-13\pi}{180}\)
-0.21255656-12°\(\frac{-\pi}{15}\)
-0.19438031-11°\(\frac{-11\pi}{180}\)
-0.17632698-10°\(\frac{-\pi}{18}\)
-0.15838444-9°\(\frac{-\pi}{20}\)
-0.14054083-8°\(\frac{-2\pi}{45}\)
-0.12278456-7°\(\frac{-7\pi}{180}\)
-0.10510424-6°\(\frac{-\pi}{30}\)
-0.08748866-5°\(\frac{-\pi}{36}\)
-0.06992681-4°\(\frac{-\pi}{45}\)
-0.05240778-3°\(\frac{-\pi}{60}\)
-0.03492077-2°\(\frac{-\pi}{90}\)
-0.01745506-1°\(\frac{-\pi}{180}\)
00
0.01745506\(\frac{\pi}{180}\)
0.03492077\(\frac{\pi}{90}\)
0.05240778\(\frac{\pi}{60}\)
0.06992681\(\frac{\pi}{45}\)
0.08748866\(\frac{\pi}{36}\)
0.10510424\(\frac{\pi}{30}\)
0.12278456\(\frac{7\pi}{180}\)
0.14054083\(\frac{2\pi}{45}\)
0.15838444\(\frac{\pi}{20}\)
0.1763269810°\(\frac{\pi}{18}\)
0.1943803111°\(\frac{11\pi}{180}\)
0.2125565612°\(\frac{\pi}{15}\)
0.2308681913°\(\frac{13\pi}{180}\)
0.24932814°\(\frac{7\pi}{90}\)
0.2679491915°\(\frac{\pi}{12}\)
0.2867453916°\(\frac{4\pi}{45}\)
0.3057306817°\(\frac{17\pi}{180}\)
0.324919718°\(\frac{\pi}{10}\)
0.3443276119°\(\frac{19\pi}{180}\)
0.3639702320°\(\frac{\pi}{9}\)
0.3838640421°\(\frac{7\pi}{60}\)
0.4040262322°\(\frac{11\pi}{90}\)
0.4244748223°\(\frac{23\pi}{180}\)
0.4452286924°\(\frac{2\pi}{15}\)
0.4663076625°\(\frac{5\pi}{36}\)
0.4877325926°\(\frac{13\pi}{90}\)
0.5095254527°\(\frac{3\pi}{20}\)
0.5317094328°\(\frac{7\pi}{45}\)
0.5543090529°\(\frac{29\pi}{180}\)
0.5773502730°\(\frac{\pi}{6}\)
0.6008606231°\(\frac{31\pi}{180}\)
0.6248693532°\(\frac{8\pi}{45}\)
0.6494075933°\(\frac{11\pi}{60}\)
0.6745085234°\(\frac{17\pi}{90}\)
0.7002075435°\(\frac{7\pi}{36}\)
0.7265425336°\(\frac{\pi}{5}\)
0.7535540537°\(\frac{37\pi}{180}\)
0.7812856338°\(\frac{19\pi}{90}\)
0.8097840339°\(\frac{13\pi}{60}\)
0.8390996340°\(\frac{2\pi}{9}\)
0.8692867441°\(\frac{41\pi}{180}\)
0.9004040442°\(\frac{7\pi}{30}\)
0.9325150943°\(\frac{43\pi}{180}\)
0.9656887744°\(\frac{11\pi}{45}\)
145°\(\frac{\pi}{4}\)
1.0355303146°\(\frac{23\pi}{90}\)
1.0723687147°\(\frac{47\pi}{180}\)
1.1106125148°\(\frac{4\pi}{15}\)
1.1503684149°\(\frac{49\pi}{180}\)
1.1917535950°\(\frac{5\pi}{18}\)
1.2348971651°\(\frac{17\pi}{60}\)
1.2799416352°\(\frac{13\pi}{45}\)
1.3270448253°\(\frac{53\pi}{180}\)
1.3763819254°\(\frac{3\pi}{10}\)
1.4281480155°\(\frac{11\pi}{36}\)
1.4825609756°\(\frac{14\pi}{45}\)
1.5398649657°\(\frac{19\pi}{60}\)
1.6003345358°\(\frac{29\pi}{90}\)
1.6642794859°\(\frac{59\pi}{180}\)
1.7320508160°\(\frac{\pi}{3}\)
1.8040477661°\(\frac{61\pi}{180}\)
1.8807264762°\(\frac{31\pi}{90}\)
1.9626105163°\(\frac{7\pi}{20}\)
2.0503038464°\(\frac{16\pi}{45}\)
2.1445069265°\(\frac{13\pi}{36}\)
2.2460367766°\(\frac{11\pi}{30}\)
2.3558523767°\(\frac{67\pi}{180}\)
2.4750868568°\(\frac{17\pi}{45}\)
2.6050890669°\(\frac{23\pi}{60}\)
2.7474774270°\(\frac{7\pi}{18}\)
2.9042108871°\(\frac{71\pi}{180}\)
3.0776835472°\(\frac{2\pi}{5}\)
3.2708526273°\(\frac{73\pi}{180}\)
3.4874144474°\(\frac{37\pi}{90}\)
3.7320508175°\(\frac{5\pi}{12}\)
4.0107809376°\(\frac{19\pi}{45}\)
4.3314758777°\(\frac{77\pi}{180}\)
4.7046301178°\(\frac{13\pi}{30}\)
5.1445540279°\(\frac{79\pi}{180}\)
5.6712818280°\(\frac{4\pi}{9}\)
6.3137515181°\(\frac{9\pi}{20}\)
7.1153697282°\(\frac{41\pi}{90}\)
8.1443464383°\(\frac{83\pi}{180}\)
9.5143644584°\(\frac{7\pi}{15}\)
11.430052385°\(\frac{17\pi}{36}\)
14.3006662686°\(\frac{43\pi}{90}\)
19.0811366987°\(\frac{29\pi}{60}\)
28.6362532888°\(\frac{22\pi}{45}\)
57.2899616389°\(\frac{89\pi}{180}\)