Enter any angle or radian to calculate the corresponding cosecant value.
The cosecant function (\(\csc(\theta)\)) is one of the six main trigonometric functions. It is typically expressed as the ratio of the hypotenuse to the opposite side in a right triangle.
In a right triangle, the cosecant of an angle \(\theta\) is defined as: \( \csc(\theta) = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{c}{a} \) This means that cosecant represents the ratio of the hypotenuse to the opposite side of an angle.
On the unit circle, the cosecant of an angle \(\theta\) is defined as: \( \csc(\theta) = \frac{1}{\sin(\theta)} \) This shows that cosecant is the reciprocal of the sine function.
Consider a right triangle where one angle is \(\theta = 30^\circ\), the length of the opposite side is 5, and the hypotenuse is 10.
Solution:
Using the definition of cosecant:
\( \csc(30^\circ) = \frac{10}{5} = 2 \)
Thus, the cosecant of \(30^\circ\) is 2.
Suppose you are calculating the slope of a hill with an angle of \(\theta = 60^\circ\). You need to determine its cosecant value.
Solution:
Using the definition of cosecant:
\( \csc(60^\circ) = \frac{1}{\sin(60^\circ)} = \frac{1}{0.866} \approx 1.155 \)
Thus, the cosecant of \(60^\circ\) is approximately 1.155.
The graph of the cosecant function exhibits periodic behavior and features vertical asymptotes. Below are some key properties:
The sign and behavior of cosecant in different quadrants are as follows:
Quadrant | Degrees | Radians | Sign | Range | Monotonicity |
---|---|---|---|---|---|
1st Quadrant | \(0^\circ\) - \(90^\circ\) | \(0\) - \(\frac{\pi}{2}\) | Positive | \((\infty, 1]\) | Decreasing |
2nd Quadrant | \(90^\circ\) - \(180^\circ\) | \(\frac{\pi}{2}\) - \(\pi\) | Positive | \([1, \infty)\) | Increasing |
3rd Quadrant | \(180^\circ\) - \(270^\circ\) | \(\pi\) - \(\frac{3\pi}{2}\) | Negative | \((-\infty, -1]\) | Increasing |
4th Quadrant | \(270^\circ\) - \(360^\circ\) | \(\frac{3\pi}{2}\) - \(2\pi\) | Negative | \([-1, -\infty)\) | Decreasing |
The reciprocal of the cosecant function is the sine function (\(\sin(\theta)\)): \( \frac{1}{\csc(\theta)} = \sin(\theta) \) Note: Sine is undefined when \(\csc(\theta) = 0\).
The derivative of the cosecant function is: \( \frac{d}{d\theta} \csc(\theta) = -\csc(\theta) \cot(\theta) \)
The integral of the cosecant function is: \( \int \csc(\theta) \, d\theta = -\ln|\csc(\theta) + \cot(\theta)| + C \)
The inverse cosecant function (\(\text{arccsc}(x)\)) finds the angle \(\theta\) corresponding to a given cosecant value \(x\): \( \theta = \text{arccsc}(x) \)
Degree | Radian | Cosecant Value |
---|---|---|
5° | \(\frac{\pi}{36}\) | 11.47371325 |
10° | \(\frac{\pi}{18}\) | 5.75877048 |
15° | \(\frac{\pi}{12}\) | 3.86370331 |
20° | \(\frac{\pi}{9}\) | 2.9238044 |
25° | \(\frac{5\pi}{36}\) | 2.36620158 |
30° | \(\frac{\pi}{6}\) | 2 |
35° | \(\frac{7\pi}{36}\) | 1.7434468 |
40° | \(\frac{2\pi}{9}\) | 1.55572383 |
45° | \(\frac{\pi}{4}\) | 1.41421356 |
50° | \(\frac{5\pi}{18}\) | 1.30540729 |
55° | \(\frac{11\pi}{36}\) | 1.22077459 |
60° | \(\frac{\pi}{3}\) | 1.15470054 |
65° | \(\frac{13\pi}{36}\) | 1.10337792 |
70° | \(\frac{7\pi}{18}\) | 1.06417777 |
75° | \(\frac{5\pi}{12}\) | 1.03527618 |
80° | \(\frac{4\pi}{9}\) | 1.01542661 |
85° | \(\frac{17\pi}{36}\) | 1.00381984 |
90° | \(\frac{\pi}{2}\) | 1 |
95° | \(\frac{19\pi}{36}\) | 1.00381984 |
100° | \(\frac{5\pi}{9}\) | 1.01542661 |
105° | \(\frac{7\pi}{12}\) | 1.03527618 |
110° | \(\frac{11\pi}{18}\) | 1.06417777 |
115° | \(\frac{23\pi}{36}\) | 1.10337792 |
120° | \(\frac{2\pi}{3}\) | 1.15470054 |
125° | \(\frac{25\pi}{36}\) | 1.22077459 |
130° | \(\frac{13\pi}{18}\) | 1.30540729 |
135° | \(\frac{3\pi}{4}\) | 1.41421356 |
140° | \(\frac{7\pi}{9}\) | 1.55572383 |
145° | \(\frac{29\pi}{36}\) | 1.7434468 |
150° | \(\frac{5\pi}{6}\) | 2 |
155° | \(\frac{31\pi}{36}\) | 2.36620158 |
160° | \(\frac{8\pi}{9}\) | 2.9238044 |
165° | \(\frac{11\pi}{12}\) | 3.86370331 |
170° | \(\frac{17\pi}{18}\) | 5.75877048 |
175° | \(\frac{35\pi}{36}\) | 11.47371325 |
185° | \(\frac{37\pi}{36}\) | -11.47371325 |
190° | \(\frac{19\pi}{18}\) | -5.75877048 |
195° | \(\frac{13\pi}{12}\) | -3.86370331 |
200° | \(\frac{10\pi}{9}\) | -2.9238044 |
205° | \(\frac{41\pi}{36}\) | -2.36620158 |
210° | \(\frac{7\pi}{6}\) | -2 |
215° | \(\frac{43\pi}{36}\) | -1.7434468 |
220° | \(\frac{11\pi}{9}\) | -1.55572383 |
225° | \(\frac{5\pi}{4}\) | -1.41421356 |
230° | \(\frac{23\pi}{18}\) | -1.30540729 |
235° | \(\frac{47\pi}{36}\) | -1.22077459 |
240° | \(\frac{4\pi}{3}\) | -1.15470054 |
245° | \(\frac{49\pi}{36}\) | -1.10337792 |
250° | \(\frac{25\pi}{18}\) | -1.06417777 |
255° | \(\frac{17\pi}{12}\) | -1.03527618 |
260° | \(\frac{13\pi}{9}\) | -1.01542661 |
265° | \(\frac{53\pi}{36}\) | -1.00381984 |
270° | \(\frac{3\pi}{2}\) | -1 |
275° | \(\frac{55\pi}{36}\) | -1.00381984 |
280° | \(\frac{14\pi}{9}\) | -1.01542661 |
285° | \(\frac{19\pi}{12}\) | -1.03527618 |
290° | \(\frac{29\pi}{18}\) | -1.06417777 |
295° | \(\frac{59\pi}{36}\) | -1.10337792 |
300° | \(\frac{5\pi}{3}\) | -1.15470054 |
305° | \(\frac{61\pi}{36}\) | -1.22077459 |
310° | \(\frac{31\pi}{18}\) | -1.30540729 |
315° | \(\frac{7\pi}{4}\) | -1.41421356 |
320° | \(\frac{16\pi}{9}\) | -1.55572383 |
325° | \(\frac{65\pi}{36}\) | -1.7434468 |
330° | \(\frac{11\pi}{6}\) | -2 |
335° | \(\frac{67\pi}{36}\) | -2.36620158 |
340° | \(\frac{17\pi}{9}\) | -2.9238044 |
345° | \(\frac{23\pi}{12}\) | -3.86370331 |
350° | \(\frac{35\pi}{18}\) | -5.75877048 |
355° | \(\frac{71\pi}{36}\) | -11.47371325 |