Cosecant Calculator

Enter any angle or radian to calculate the corresponding cosecant value.

Calculate csc(θ)

Result

What Is Cosecant?

The cosecant function (csc(θ)) is one of the six main trigonometric functions. It is typically expressed as the ratio of the hypotenuse to the opposite side in a right triangle.

right triangle

In a right triangle, the cosecant of an angle θ is defined as: csc(θ)=HypotenuseOpposite=ca This means that cosecant represents the ratio of the hypotenuse to the opposite side of an angle.

On the unit circle, the cosecant of an angle θ is defined as: csc(θ)=1sin(θ) This shows that cosecant is the reciprocal of the sine function.

Examples

Example 1: Calculating Cosecant in a Right Triangle

Consider a right triangle where one angle is θ=30, the length of the opposite side is 5, and the hypotenuse is 10.

Solution:

Using the definition of cosecant:

csc(30)=105=2

Thus, the cosecant of 30 is 2.

Example 2: Real-World Application

Suppose you are calculating the slope of a hill with an angle of θ=60. You need to determine its cosecant value.

Solution:

Using the definition of cosecant:

csc(60)=1sin(60)=10.8661.155

Thus, the cosecant of 60 is approximately 1.155.

Graph and Properties of Cosecant

cosecant graph

The graph of the cosecant function exhibits periodic behavior and features vertical asymptotes. Below are some key properties:

  • Periodicity: The cosecant function repeats every 2π radians (or 360°).
  • Odd Function: Cosecant is an odd function, meaning csc(θ)=csc(θ). Its graph is symmetric about the origin.
  • Amplitude: The amplitude of the cosecant function is unlimited, with values ranging from negative infinity to positive infinity.
  • Asymptotes: Vertical asymptotes occur at θ=nπ (where n is an integer), where the function approaches infinity or negative infinity.
  • Domain and Range
    • Domain: All angles except nπ (where n is an integer).
    • Range: (,1][1,).

Quadrant Behavior of Cosecant

The sign and behavior of cosecant in different quadrants are as follows:

Quadrant Degrees Radians Sign Range Monotonicity
1st Quadrant0 - 900 - π2Positive(,1]Decreasing
2nd Quadrant90 - 180π2 - πPositive[1,)Increasing
3rd Quadrant180 - 270π - 3π2Negative(,1]Increasing
4th Quadrant270 - 3603π2 - 2πNegative[1,)Decreasing

Other Cosecant Calculations

1. Reciprocal of Cosecant (Sine Function)

The reciprocal of the cosecant function is the sine function (sin(θ)): 1csc(θ)=sin(θ) Note: Sine is undefined when csc(θ)=0.

2. Derivative of Cosecant

The derivative of the cosecant function is: ddθcsc(θ)=csc(θ)cot(θ)

3. Integral of Cosecant

The integral of the cosecant function is: csc(θ)dθ=ln|csc(θ)+cot(θ)|+C

4. Inverse Cosecant Function (arccsc)

The inverse cosecant function (arccsc(x)) finds the angle θ corresponding to a given cosecant value x: θ=arccsc(x)

Cosecant Table of Common Values

Degree Radian Cosecant Value
π3611.47371325
10°π185.75877048
15°π123.86370331
20°π92.9238044
25°5π362.36620158
30°π62
35°7π361.7434468
40°2π91.55572383
45°π41.41421356
50°5π181.30540729
55°11π361.22077459
60°π31.15470054
65°13π361.10337792
70°7π181.06417777
75°5π121.03527618
80°4π91.01542661
85°17π361.00381984
90°π21
95°19π361.00381984
100°5π91.01542661
105°7π121.03527618
110°11π181.06417777
115°23π361.10337792
120°2π31.15470054
125°25π361.22077459
130°13π181.30540729
135°3π41.41421356
140°7π91.55572383
145°29π361.7434468
150°5π62
155°31π362.36620158
160°8π92.9238044
165°11π123.86370331
170°17π185.75877048
175°35π3611.47371325
185°37π36-11.47371325
190°19π18-5.75877048
195°13π12-3.86370331
200°10π9-2.9238044
205°41π36-2.36620158
210°7π6-2
215°43π36-1.7434468
220°11π9-1.55572383
225°5π4-1.41421356
230°23π18-1.30540729
235°47π36-1.22077459
240°4π3-1.15470054
245°49π36-1.10337792
250°25π18-1.06417777
255°17π12-1.03527618
260°13π9-1.01542661
265°53π36-1.00381984
270°3π2-1
275°55π36-1.00381984
280°14π9-1.01542661
285°19π12-1.03527618
290°29π18-1.06417777
295°59π36-1.10337792
300°5π3-1.15470054
305°61π36-1.22077459
310°31π18-1.30540729
315°7π4-1.41421356
320°16π9-1.55572383
325°65π36-1.7434468
330°11π6-2
335°67π36-2.36620158
340°17π9-2.9238044
345°23π12-3.86370331
350°35π18-5.75877048
355°71π36-11.47371325