Cosecant Calculator

Enter any angle or radian to calculate the corresponding cosecant value.

Calculate csc(θ)

Result

What Is Cosecant?

The cosecant function (\(\csc(\theta)\)) is one of the six main trigonometric functions. It is typically expressed as the ratio of the hypotenuse to the opposite side in a right triangle.

right triangle

In a right triangle, the cosecant of an angle \(\theta\) is defined as: \( \csc(\theta) = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{c}{a} \) This means that cosecant represents the ratio of the hypotenuse to the opposite side of an angle.

On the unit circle, the cosecant of an angle \(\theta\) is defined as: \( \csc(\theta) = \frac{1}{\sin(\theta)} \) This shows that cosecant is the reciprocal of the sine function.

Examples

Example 1: Calculating Cosecant in a Right Triangle

Consider a right triangle where one angle is \(\theta = 30^\circ\), the length of the opposite side is 5, and the hypotenuse is 10.

Solution:

Using the definition of cosecant:

\( \csc(30^\circ) = \frac{10}{5} = 2 \)

Thus, the cosecant of \(30^\circ\) is 2.

Example 2: Real-World Application

Suppose you are calculating the slope of a hill with an angle of \(\theta = 60^\circ\). You need to determine its cosecant value.

Solution:

Using the definition of cosecant:

\( \csc(60^\circ) = \frac{1}{\sin(60^\circ)} = \frac{1}{0.866} \approx 1.155 \)

Thus, the cosecant of \(60^\circ\) is approximately 1.155.

Graph and Properties of Cosecant

cosecant graph

The graph of the cosecant function exhibits periodic behavior and features vertical asymptotes. Below are some key properties:

  • Periodicity: The cosecant function repeats every \(2\pi\) radians (or 360°).
  • Odd Function: Cosecant is an odd function, meaning \(\csc(-\theta) = -\csc(\theta)\). Its graph is symmetric about the origin.
  • Amplitude: The amplitude of the cosecant function is unlimited, with values ranging from negative infinity to positive infinity.
  • Asymptotes: Vertical asymptotes occur at \(\theta = n\pi\) (where \(n\) is an integer), where the function approaches infinity or negative infinity.
  • Domain and Range
    • Domain: All angles except \(n\pi\) (where \(n\) is an integer).
    • Range: \((-\infty, -1] \cup [1, \infty)\).

Quadrant Behavior of Cosecant

The sign and behavior of cosecant in different quadrants are as follows:

Quadrant Degrees Radians Sign Range Monotonicity
1st Quadrant\(0^\circ\) - \(90^\circ\)\(0\) - \(\frac{\pi}{2}\)Positive\((\infty, 1]\)Decreasing
2nd Quadrant\(90^\circ\) - \(180^\circ\)\(\frac{\pi}{2}\) - \(\pi\)Positive\([1, \infty)\)Increasing
3rd Quadrant\(180^\circ\) - \(270^\circ\)\(\pi\) - \(\frac{3\pi}{2}\)Negative\((-\infty, -1]\)Increasing
4th Quadrant\(270^\circ\) - \(360^\circ\)\(\frac{3\pi}{2}\) - \(2\pi\)Negative\([-1, -\infty)\)Decreasing

Other Cosecant Calculations

1. Reciprocal of Cosecant (Sine Function)

The reciprocal of the cosecant function is the sine function (\(\sin(\theta)\)): \( \frac{1}{\csc(\theta)} = \sin(\theta) \) Note: Sine is undefined when \(\csc(\theta) = 0\).

2. Derivative of Cosecant

The derivative of the cosecant function is: \( \frac{d}{d\theta} \csc(\theta) = -\csc(\theta) \cot(\theta) \)

3. Integral of Cosecant

The integral of the cosecant function is: \( \int \csc(\theta) \, d\theta = -\ln|\csc(\theta) + \cot(\theta)| + C \)

4. Inverse Cosecant Function (arccsc)

The inverse cosecant function (\(\text{arccsc}(x)\)) finds the angle \(\theta\) corresponding to a given cosecant value \(x\): \( \theta = \text{arccsc}(x) \)

Cosecant Table of Common Values

Degree Radian Cosecant Value
\(\frac{\pi}{36}\)11.47371325
10°\(\frac{\pi}{18}\)5.75877048
15°\(\frac{\pi}{12}\)3.86370331
20°\(\frac{\pi}{9}\)2.9238044
25°\(\frac{5\pi}{36}\)2.36620158
30°\(\frac{\pi}{6}\)2
35°\(\frac{7\pi}{36}\)1.7434468
40°\(\frac{2\pi}{9}\)1.55572383
45°\(\frac{\pi}{4}\)1.41421356
50°\(\frac{5\pi}{18}\)1.30540729
55°\(\frac{11\pi}{36}\)1.22077459
60°\(\frac{\pi}{3}\)1.15470054
65°\(\frac{13\pi}{36}\)1.10337792
70°\(\frac{7\pi}{18}\)1.06417777
75°\(\frac{5\pi}{12}\)1.03527618
80°\(\frac{4\pi}{9}\)1.01542661
85°\(\frac{17\pi}{36}\)1.00381984
90°\(\frac{\pi}{2}\)1
95°\(\frac{19\pi}{36}\)1.00381984
100°\(\frac{5\pi}{9}\)1.01542661
105°\(\frac{7\pi}{12}\)1.03527618
110°\(\frac{11\pi}{18}\)1.06417777
115°\(\frac{23\pi}{36}\)1.10337792
120°\(\frac{2\pi}{3}\)1.15470054
125°\(\frac{25\pi}{36}\)1.22077459
130°\(\frac{13\pi}{18}\)1.30540729
135°\(\frac{3\pi}{4}\)1.41421356
140°\(\frac{7\pi}{9}\)1.55572383
145°\(\frac{29\pi}{36}\)1.7434468
150°\(\frac{5\pi}{6}\)2
155°\(\frac{31\pi}{36}\)2.36620158
160°\(\frac{8\pi}{9}\)2.9238044
165°\(\frac{11\pi}{12}\)3.86370331
170°\(\frac{17\pi}{18}\)5.75877048
175°\(\frac{35\pi}{36}\)11.47371325
185°\(\frac{37\pi}{36}\)-11.47371325
190°\(\frac{19\pi}{18}\)-5.75877048
195°\(\frac{13\pi}{12}\)-3.86370331
200°\(\frac{10\pi}{9}\)-2.9238044
205°\(\frac{41\pi}{36}\)-2.36620158
210°\(\frac{7\pi}{6}\)-2
215°\(\frac{43\pi}{36}\)-1.7434468
220°\(\frac{11\pi}{9}\)-1.55572383
225°\(\frac{5\pi}{4}\)-1.41421356
230°\(\frac{23\pi}{18}\)-1.30540729
235°\(\frac{47\pi}{36}\)-1.22077459
240°\(\frac{4\pi}{3}\)-1.15470054
245°\(\frac{49\pi}{36}\)-1.10337792
250°\(\frac{25\pi}{18}\)-1.06417777
255°\(\frac{17\pi}{12}\)-1.03527618
260°\(\frac{13\pi}{9}\)-1.01542661
265°\(\frac{53\pi}{36}\)-1.00381984
270°\(\frac{3\pi}{2}\)-1
275°\(\frac{55\pi}{36}\)-1.00381984
280°\(\frac{14\pi}{9}\)-1.01542661
285°\(\frac{19\pi}{12}\)-1.03527618
290°\(\frac{29\pi}{18}\)-1.06417777
295°\(\frac{59\pi}{36}\)-1.10337792
300°\(\frac{5\pi}{3}\)-1.15470054
305°\(\frac{61\pi}{36}\)-1.22077459
310°\(\frac{31\pi}{18}\)-1.30540729
315°\(\frac{7\pi}{4}\)-1.41421356
320°\(\frac{16\pi}{9}\)-1.55572383
325°\(\frac{65\pi}{36}\)-1.7434468
330°\(\frac{11\pi}{6}\)-2
335°\(\frac{67\pi}{36}\)-2.36620158
340°\(\frac{17\pi}{9}\)-2.9238044
345°\(\frac{23\pi}{12}\)-3.86370331
350°\(\frac{35\pi}{18}\)-5.75877048
355°\(\frac{71\pi}{36}\)-11.47371325