Harmonic Number Calculator

Enter \( N \) to calculate the \( N \)th harmonic number.

Harmonic Number Calculate

Result

What Are Harmonic Numbers?

Harmonic numbers, often denoted as \( H_n \), represent the sum of the reciprocals of the first \( n \) natural numbers. The formula for the \( n \)th harmonic number is: \( H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \) Harmonic numbers grow steadily as \( n \) increases, trending toward infinity, though the growth rate slows over time. They have significant applications in various fields, including physics, computer science, and mathematics.

How to Calculate the \( N \)th Harmonic Number

To calculate the \( N \)th harmonic number \( H_n \), simply sum the reciprocals of all integers from 1 to \( n \). The general formula is: \( H_n = \sum_{k=1}^{n} \frac{1}{k} \) This can be computed using recursive, iterative, or direct summation methods.

Examples

Example 1: Calculate the 5th Harmonic Number

Solution:

\( H_5 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = 2.2833333 \)

Example 2: Calculate the 10th Harmonic Number

Solution:

\( H_{10} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} = 2.929 \)

Example 3: Calculate the 20th Harmonic Number

Solution:

\( H_{20} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17} + \frac{1}{18} + \frac{1}{19} + \frac{1}{20} = 3.5977 \)

The First 100 Harmonic Numbers

  • H1 = 1
  • H2 = 1.5
  • H3 = 1.83333
  • H4 = 2.08333
  • H5 = 2.28333
  • H6 = 2.45
  • H7 = 2.59286
  • H8 = 2.71786
  • H9 = 2.82897
  • H10 = 2.92897
  • H11 = 3.01988
  • H12 = 3.10321
  • H13 = 3.18013
  • H14 = 3.25156
  • H15 = 3.31823
  • H16 = 3.38073
  • H17 = 3.43955
  • H18 = 3.49511
  • H19 = 3.54774
  • H20 = 3.59774
  • H21 = 3.64536
  • H22 = 3.69081
  • H23 = 3.73429
  • H24 = 3.77596
  • H25 = 3.81596
  • H26 = 3.85442
  • H27 = 3.89146
  • H28 = 3.92717
  • H29 = 3.96165
  • H30 = 3.99499
  • H31 = 4.02725
  • H32 = 4.0585
  • H33 = 4.0888
  • H34 = 4.11821
  • H35 = 4.14678
  • H36 = 4.17456
  • H37 = 4.20159
  • H38 = 4.2279
  • H39 = 4.25354
  • H40 = 4.27854
  • H41 = 4.30293
  • H42 = 4.32674
  • H43 = 4.35
  • H44 = 4.37273
  • H45 = 4.39495
  • H46 = 4.41669
  • H47 = 4.43796
  • H48 = 4.4588
  • H49 = 4.47921
  • H50 = 4.49921
  • H51 = 4.51881
  • H52 = 4.53804
  • H53 = 4.55691
  • H54 = 4.57543
  • H55 = 4.59361
  • H56 = 4.61147
  • H57 = 4.62901
  • H58 = 4.64625
  • H59 = 4.6632
  • H60 = 4.67987
  • H61 = 4.69626
  • H62 = 4.71239
  • H63 = 4.72827
  • H64 = 4.74389
  • H65 = 4.75928
  • H66 = 4.77443
  • H67 = 4.78935
  • H68 = 4.80406
  • H69 = 4.81855
  • H70 = 4.83284
  • H71 = 4.84692
  • H72 = 4.86081
  • H73 = 4.87451
  • H74 = 4.88802
  • H75 = 4.90136
  • H76 = 4.91451
  • H77 = 4.9275
  • H78 = 4.94032
  • H79 = 4.95298
  • H80 = 4.96548
  • H81 = 4.97782
  • H82 = 4.99002
  • H83 = 5.00207
  • H84 = 5.01397
  • H85 = 5.02574
  • H86 = 5.03737
  • H87 = 5.04886
  • H88 = 5.06022
  • H89 = 5.07146
  • H90 = 5.08257
  • H91 = 5.09356
  • H92 = 5.10443
  • H93 = 5.11518
  • H94 = 5.12582
  • H95 = 5.13635
  • H96 = 5.14676
  • H97 = 5.15707
  • H98 = 5.16728
  • H99 = 5.17738
  • H100 = 5.18738