Arccosine Calculator

Enter a cosine value to calculate the corresponding angle in both degrees and radians.

Calculate arccos(x)

Degrees

Radians

What is the Arccosine Function?

The arccosine function, also called the inverse cosine function, is the reverse of the cosine function. It is represented as \(\arccos(x)\) or \(\cos^{-1}(x)\). This function is used to determine the angle corresponding to a specific cosine value. For the cosine function \(y = \cos(\theta)\), the arccosine is defined as: \( \theta = \arccos(x) \) Here: \(-1 \leq x \leq 1\), \(0 \leq \theta \leq \pi\). The range of the arccosine function is \([0, \pi]\), ensuring it is unique and invertible.

Examples

Example 1: Find the angle for \(\cos(\theta) = 0\)

Solution:

\( \theta = \arccos(0) = \frac{\pi}{2} \approx 1.5708 \, \text{radians} \)

The angle corresponding to a cosine value of 0 is \(\frac{\pi}{2}\) or 90°.

Example 2: Find the angle for \(\cos(\theta) = 0.5\)

Solution:

\( \theta = \arccos(0.5) = \frac{\pi}{3} \approx 1.0472 \, \text{radians} \)

The angle corresponding to a cosine value of 0.5 is \(\frac{\pi}{3}\) or 60°.

Graph of the Arccosine Function

arccosine graph

The graph of the arccosine function is a smooth, decreasing curve, starting at \((1, 0)\) and ending at \((-1, \pi)\). Below are its key characteristics:

  • Domain: \([-1, 1]\)
  • Range: \([0, \pi]\)
  • Monotonicity: The arccosine function is strictly decreasing across its domain.
  • Parity: The arccosine function does not exhibit odd or even symmetry.

Arccosine Conversion Table

Cosine Value Degrees Radians
10
0.9998477\(\frac{\pi}{180}\)
0.99939083\(\frac{\pi}{90}\)
0.99862953\(\frac{\pi}{60}\)
0.99756405\(\frac{\pi}{45}\)
0.9961947\(\frac{\pi}{36}\)
0.9945219\(\frac{\pi}{30}\)
0.99254615\(\frac{7\pi}{180}\)
0.99026807\(\frac{2\pi}{45}\)
0.98768834\(\frac{\pi}{20}\)
0.9848077510°\(\frac{\pi}{18}\)
0.9816271811°\(\frac{11\pi}{180}\)
0.978147612°\(\frac{\pi}{15}\)
0.9743700613°\(\frac{13\pi}{180}\)
0.9702957314°\(\frac{7\pi}{90}\)
0.9659258315°\(\frac{\pi}{12}\)
0.961261716°\(\frac{4\pi}{45}\)
0.9563047617°\(\frac{17\pi}{180}\)
0.9510565218°\(\frac{\pi}{10}\)
0.9455185819°\(\frac{19\pi}{180}\)
0.9396926220°\(\frac{\pi}{9}\)
0.9335804321°\(\frac{7\pi}{60}\)
0.9271838522°\(\frac{11\pi}{90}\)
0.9205048523°\(\frac{23\pi}{180}\)
0.9135454624°\(\frac{2\pi}{15}\)
0.9063077925°\(\frac{5\pi}{36}\)
0.8987940526°\(\frac{13\pi}{90}\)
0.8910065227°\(\frac{3\pi}{20}\)
0.8829475928°\(\frac{7\pi}{45}\)
0.8746197129°\(\frac{29\pi}{180}\)
0.866025430°\(\frac{\pi}{6}\)
0.857167331°\(\frac{31\pi}{180}\)
0.848048132°\(\frac{8\pi}{45}\)
0.8386705733°\(\frac{11\pi}{60}\)
0.8290375734°\(\frac{17\pi}{90}\)
0.8191520435°\(\frac{7\pi}{36}\)
0.8090169936°\(\frac{\pi}{5}\)
0.7986355137°\(\frac{37\pi}{180}\)
0.7880107538°\(\frac{19\pi}{90}\)
0.7771459639°\(\frac{13\pi}{60}\)
0.7660444440°\(\frac{2\pi}{9}\)
0.7547095841°\(\frac{41\pi}{180}\)
0.7431448342°\(\frac{7\pi}{30}\)
0.731353743°\(\frac{43\pi}{180}\)
0.719339844°\(\frac{11\pi}{45}\)
0.7071067845°\(\frac{\pi}{4}\)
0.6946583746°\(\frac{23\pi}{90}\)
0.6819983647°\(\frac{47\pi}{180}\)
0.6691306148°\(\frac{4\pi}{15}\)
0.6560590349°\(\frac{49\pi}{180}\)
0.6427876150°\(\frac{5\pi}{18}\)
0.6293203951°\(\frac{17\pi}{60}\)
0.6156614852°\(\frac{13\pi}{45}\)
0.6018150253°\(\frac{53\pi}{180}\)
0.5877852554°\(\frac{3\pi}{10}\)
0.5735764455°\(\frac{11\pi}{36}\)
0.559192956°\(\frac{14\pi}{45}\)
0.5446390457°\(\frac{19\pi}{60}\)
0.5299192658°\(\frac{29\pi}{90}\)
0.5150380759°\(\frac{59\pi}{180}\)
0.560°\(\frac{\pi}{3}\)
0.4848096261°\(\frac{61\pi}{180}\)
0.4694715662°\(\frac{31\pi}{90}\)
0.453990563°\(\frac{7\pi}{20}\)
0.4383711564°\(\frac{16\pi}{45}\)
0.4226182665°\(\frac{13\pi}{36}\)
0.4067366466°\(\frac{11\pi}{30}\)
0.3907311367°\(\frac{67\pi}{180}\)
0.3746065968°\(\frac{17\pi}{45}\)
0.3583679569°\(\frac{23\pi}{60}\)
0.3420201470°\(\frac{7\pi}{18}\)
0.3255681571°\(\frac{71\pi}{180}\)
0.3090169972°\(\frac{2\pi}{5}\)
0.292371773°\(\frac{73\pi}{180}\)
0.2756373674°\(\frac{37\pi}{90}\)
0.2588190575°\(\frac{5\pi}{12}\)
0.241921976°\(\frac{19\pi}{45}\)
0.2249510577°\(\frac{77\pi}{180}\)
0.2079116978°\(\frac{13\pi}{30}\)
0.19080979°\(\frac{79\pi}{180}\)
0.1736481880°\(\frac{4\pi}{9}\)
0.1564344781°\(\frac{9\pi}{20}\)
0.139173182°\(\frac{41\pi}{90}\)
0.1218693483°\(\frac{83\pi}{180}\)
0.1045284684°\(\frac{7\pi}{15}\)
0.0871557485°\(\frac{17\pi}{36}\)
0.0697564786°\(\frac{43\pi}{90}\)
0.0523359687°\(\frac{29\pi}{60}\)
0.034899588°\(\frac{22\pi}{45}\)
0.0174524189°\(\frac{89\pi}{180}\)
090°\(\frac{\pi}{2}\)
-0.0174524191°\(\frac{91\pi}{180}\)
-0.034899592°\(\frac{23\pi}{45}\)
-0.0523359693°\(\frac{31\pi}{60}\)
-0.0697564794°\(\frac{47\pi}{90}\)
-0.0871557495°\(\frac{19\pi}{36}\)
-0.1045284696°\(\frac{8\pi}{15}\)
-0.1218693497°\(\frac{97\pi}{180}\)
-0.139173198°\(\frac{49\pi}{90}\)
-0.1564344799°\(\frac{11\pi}{20}\)
-0.17364818100°\(\frac{5\pi}{9}\)
-0.190809101°\(\frac{101\pi}{180}\)
-0.20791169102°\(\frac{17\pi}{30}\)
-0.22495105103°\(\frac{103\pi}{180}\)
-0.2419219104°\(\frac{26\pi}{45}\)
-0.25881905105°\(\frac{7\pi}{12}\)
-0.27563736106°\(\frac{53\pi}{90}\)
-0.2923717107°\(\frac{107\pi}{180}\)
-0.30901699108°\(\frac{3\pi}{5}\)
-0.32556815109°\(\frac{109\pi}{180}\)
-0.34202014110°\(\frac{11\pi}{18}\)
-0.35836795111°\(\frac{37\pi}{60}\)
-0.37460659112°\(\frac{28\pi}{45}\)
-0.39073113113°\(\frac{113\pi}{180}\)
-0.40673664114°\(\frac{19\pi}{30}\)
-0.42261826115°\(\frac{23\pi}{36}\)
-0.43837115116°\(\frac{29\pi}{45}\)
-0.4539905117°\(\frac{13\pi}{20}\)
-0.46947156118°\(\frac{59\pi}{90}\)
-0.48480962119°\(\frac{119\pi}{180}\)
-0.5120°\(\frac{2\pi}{3}\)
-0.51503807121°\(\frac{121\pi}{180}\)
-0.52991926122°\(\frac{61\pi}{90}\)
-0.54463904123°\(\frac{41\pi}{60}\)
-0.5591929124°\(\frac{31\pi}{45}\)
-0.57357644125°\(\frac{25\pi}{36}\)
-0.58778525126°\(\frac{7\pi}{10}\)
-0.60181502127°\(\frac{127\pi}{180}\)
-0.61566148128°\(\frac{32\pi}{45}\)
-0.62932039129°\(\frac{43\pi}{60}\)
-0.64278761130°\(\frac{13\pi}{18}\)
-0.65605903131°\(\frac{131\pi}{180}\)
-0.66913061132°\(\frac{11\pi}{15}\)
-0.68199836133°\(\frac{133\pi}{180}\)
-0.69465837134°\(\frac{67\pi}{90}\)
-0.70710678135°\(\frac{3\pi}{4}\)
-0.7193398136°\(\frac{34\pi}{45}\)
-0.7313537137°\(\frac{137\pi}{180}\)
-0.74314483138°\(\frac{23\pi}{30}\)
-0.75470958139°\(\frac{139\pi}{180}\)
-0.76604444140°\(\frac{7\pi}{9}\)
-0.77714596141°\(\frac{47\pi}{60}\)
-0.78801075142°\(\frac{71\pi}{90}\)
-0.79863551143°\(\frac{143\pi}{180}\)
-0.80901699144°\(\frac{4\pi}{5}\)
-0.81915204145°\(\frac{29\pi}{36}\)
-0.82903757146°\(\frac{73\pi}{90}\)
-0.83867057147°\(\frac{49\pi}{60}\)
-0.8480481148°\(\frac{37\pi}{45}\)
-0.8571673149°\(\frac{149\pi}{180}\)
-0.8660254150°\(\frac{5\pi}{6}\)
-0.87461971151°\(\frac{151\pi}{180}\)
-0.88294759152°\(\frac{38\pi}{45}\)
-0.89100652153°\(\frac{17\pi}{20}\)
-0.89879405154°\(\frac{77\pi}{90}\)
-0.90630779155°\(\frac{31\pi}{36}\)
-0.91354546156°\(\frac{13\pi}{15}\)
-0.92050485157°\(\frac{157\pi}{180}\)
-0.92718385158°\(\frac{79\pi}{90}\)
-0.93358043159°\(\frac{53\pi}{60}\)
-0.93969262160°\(\frac{8\pi}{9}\)
-0.94551858161°\(\frac{161\pi}{180}\)
-0.95105652162°\(\frac{9\pi}{10}\)
-0.95630476163°\(\frac{163\pi}{180}\)
-0.9612617164°\(\frac{41\pi}{45}\)
-0.96592583165°\(\frac{11\pi}{12}\)
-0.97029573166°\(\frac{83\pi}{90}\)
-0.97437006167°\(\frac{167\pi}{180}\)
-0.9781476168°\(\frac{14\pi}{15}\)
-0.98162718169°\(\frac{169\pi}{180}\)
-0.98480775170°\(\frac{17\pi}{18}\)
-0.98768834171°\(\frac{19\pi}{20}\)
-0.99026807172°\(\frac{43\pi}{45}\)
-0.99254615173°\(\frac{173\pi}{180}\)
-0.9945219174°\(\frac{29\pi}{30}\)
-0.9961947175°\(\frac{35\pi}{36}\)
-0.99756405176°\(\frac{44\pi}{45}\)
-0.99862953177°\(\frac{59\pi}{60}\)
-0.99939083178°\(\frac{89\pi}{90}\)
-0.9998477179°\(\frac{179\pi}{180}\)
-1180°π