Input a data set, and calculate the Mean Absolute Deviation instantly.
The Mean Absolute Deviation (Average Absolute Deviation, AAD) represents the average absolute difference between each data point and the dataset's mean. It is an effective measure of dispersion, calculated using the following formula: \( \text{Mean Absolute Deviation} = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}| \) Where:
Solution:
1. Calculate the mean (\( \bar{x} \)):
\( \bar{x} = \frac{4 + 8 + 6 + 5 + 3 + 7}{6} = 5.5 \)
2. Calculate absolute deviations:
|4 - 5.5| = 1.5
|8 - 5.5| = 2.5
|6 - 5.5| = 0.5
|5 - 5.5| = 0.5
|3 - 5.5| = 2.5
|7 - 5.5| = 1.5
3. Compute the AAD:
\( \text{AAD} = \frac{1.5 + 2.5 + 0.5 + 0.5 + 2.5 + 1.5}{6} = 1.5 \)
Result: The AAD for this dataset is 1.5.
Solution:
1. Calculate the mean (\( \bar{x} \)):
\( \bar{x} = \frac{10 + 12 + 23 + 23 + 16 + 23 + 21 + 16}{8} = 18 \)
2. Calculate absolute deviations:
|10 - 18| = 8
|12 - 18| = 6
|23 - 18| = 5
|23 - 18| = 5
|16 - 18| = 2
|23 - 18| = 5
|21 - 18| = 3
|16 - 18| = 2
3. Compute the AAD:
\( \text{AAD} = \frac{8 + 6 + 5 + 5 + 2 + 5 + 3 + 2}{8} = 4.5 \)
Result: The AAD for this dataset is 4.5.