Input the difference and sum of squares, and instantly find the two numbers.
Given:
Steps:
Solution:
1. Solve the quadratic equation:
\( y^2 + 2y + \frac{2^2 - 52}{2} = 0 \)
\( y^2 + 2y - 24 = 0 \)
2. Calculate the discriminant:
\( \sqrt{2^2 - 4 \cdot 1 \cdot (-24)} = \sqrt{4 + 96} = \sqrt{100} = 10 \).
3. Solve for \( y \):
\( y = \frac{-2 \pm 10}{2} = 4 \text{ or } -6 \)
4. Compute \( x \):
\( x = y + 2 \)
\( x = 6 \) or \( -4 \)
Result: The numbers are (6, 4) or (-4, -6).
Solution:
1. Solve the quadratic equation:
\( y^2 + 11y + \frac{11^2 - 145}{2} = 0 \),即 \( y^2 + 11y - 12 = 0 \).
2. Calculate the discriminant:
\( \sqrt{11^2 - 4 \cdot 1 \cdot (-12)} = \sqrt{121 + 48} = \sqrt{169} = 13 \).
3. Solve for \( y \):
\( y = \frac{-11 \pm 13}{2} = 1 \text{ or } -12 \)
4. Compute \( x \):
\( x = y + 11 \)
\( x = 12 \) or \( -1 \)
Result: The numbers are (12, 1) or (-1, -12).