Input any angle or radian to calculate its secant value.
The secant function (\(\sec(\theta)\)) is one of the fundamental trigonometric functions. Here, \(\theta\) is the angle, typically measured in radians.
In a right triangle, the secant function is defined as the ratio of the hypotenuse to the adjacent side: \( \sec(\theta) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{c}{b} \) This represents the ratio of the hypotenuse to the adjacent side of the given angle.
In the unit circle, the secant function is the reciprocal of the cosine function: \( \sec(\theta) = \frac{1}{\cos(\theta)} \)
Find the secant value for an angle \(\theta = 60^\circ\) in a right triangle where the adjacent side measures 2 units and the hypotenuse is 4 units.
Solution:
Using the definition of secant:
\( \sec(60^\circ) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{4}{2} = 2 \)
The secant of \(60^\circ\) is 2.
Calculate the secant value for a slope with an angle of \(\theta = 30^\circ\).
Solution:
Using the unit circle definition:
\( \sec(30^\circ) = \frac{1}{\cos(30^\circ)} = \frac{1}{0.866} \approx 1.155 \)
The secant of \(30^\circ\) is approximately 1.155.
Key Characteristics:
Quadrant | Degrees | Radians | Sign | Range | Monotonicity |
---|---|---|---|---|---|
1st Quadrant | \(0^\circ\) - \(90^\circ\) | \(0\) - \(\frac{\pi}{2}\) | Positive | \([1, \infty)\) | Increasing |
2nd Quadrant | \(90^\circ\) - \(180^\circ\) | \(\frac{\pi}{2}\) - \(\pi\) | Negative | \((-\infty, -1]\) | Increasing |
3rd Quadrant | \(180^\circ\) - \(270^\circ\) | \(\pi\) - \(\frac{3\pi}{2}\) | Negative | \([-1, -\infty)\) | Decreasing |
4th Quadrant | \(270^\circ\) - \(360^\circ\) | \(\frac{3\pi}{2}\) - \(2\pi\) | Positive | \((\infty, 1]\) | Decreasing |
The reciprocal of the secant function is the cosine function: \( \frac{1}{\sec(\theta)} = \cos(\theta) \) Note: When \(\sec(\theta) = 0\), the cosine function is undefined.
The derivative of the secant function is: \( \frac{d}{d\theta} \sec(\theta) = \sec(\theta) \tan(\theta) \) This property is useful in calculus for analyzing rates of change.
The integral of the secant function is: \( \int \sec(\theta) \, d\theta = \ln|\sec(\theta) + \tan(\theta)| + C \)
The inverse secant function (\(\text{arcsec}(x)\)) calculates the angle for a given secant value: \( \theta = \text{arcsec}(x) \)
Degree | Radian | Secant Value |
---|---|---|
0° | 0 | 1 |
5° | \(\frac{\pi}{36}\) | 1.00381984 |
10° | \(\frac{\pi}{18}\) | 1.01542661 |
15° | \(\frac{\pi}{12}\) | 1.03527618 |
20° | \(\frac{\pi}{9}\) | 1.06417777 |
25° | \(\frac{5\pi}{36}\) | 1.10337792 |
30° | \(\frac{\pi}{6}\) | 1.15470054 |
35° | \(\frac{7\pi}{36}\) | 1.22077459 |
40° | \(\frac{2\pi}{9}\) | 1.30540729 |
45° | \(\frac{\pi}{4}\) | 1.41421356 |
50° | \(\frac{5\pi}{18}\) | 1.55572383 |
55° | \(\frac{11\pi}{36}\) | 1.7434468 |
60° | \(\frac{\pi}{3}\) | 2 |
65° | \(\frac{13\pi}{36}\) | 2.36620158 |
70° | \(\frac{7\pi}{18}\) | 2.9238044 |
75° | \(\frac{5\pi}{12}\) | 3.86370331 |
80° | \(\frac{4\pi}{9}\) | 5.75877048 |
85° | \(\frac{17\pi}{36}\) | 11.47371325 |
95° | \(\frac{19\pi}{36}\) | -11.47371325 |
100° | \(\frac{5\pi}{9}\) | -5.75877048 |
105° | \(\frac{7\pi}{12}\) | -3.86370331 |
110° | \(\frac{11\pi}{18}\) | -2.9238044 |
115° | \(\frac{23\pi}{36}\) | -2.36620158 |
120° | \(\frac{2\pi}{3}\) | -2 |
125° | \(\frac{25\pi}{36}\) | -1.7434468 |
130° | \(\frac{13\pi}{18}\) | -1.55572383 |
135° | \(\frac{3\pi}{4}\) | -1.41421356 |
140° | \(\frac{7\pi}{9}\) | -1.30540729 |
145° | \(\frac{29\pi}{36}\) | -1.22077459 |
150° | \(\frac{5\pi}{6}\) | -1.15470054 |
155° | \(\frac{31\pi}{36}\) | -1.10337792 |
160° | \(\frac{8\pi}{9}\) | -1.06417777 |
165° | \(\frac{11\pi}{12}\) | -1.03527618 |
170° | \(\frac{17\pi}{18}\) | -1.01542661 |
175° | \(\frac{35\pi}{36}\) | -1.00381984 |
180° | π | -1 |
185° | \(\frac{37\pi}{36}\) | -1.00381984 |
190° | \(\frac{19\pi}{18}\) | -1.01542661 |
195° | \(\frac{13\pi}{12}\) | -1.03527618 |
200° | \(\frac{10\pi}{9}\) | -1.06417777 |
205° | \(\frac{41\pi}{36}\) | -1.10337792 |
210° | \(\frac{7\pi}{6}\) | -1.15470054 |
215° | \(\frac{43\pi}{36}\) | -1.22077459 |
220° | \(\frac{11\pi}{9}\) | -1.30540729 |
225° | \(\frac{5\pi}{4}\) | -1.41421356 |
230° | \(\frac{23\pi}{18}\) | -1.55572383 |
235° | \(\frac{47\pi}{36}\) | -1.7434468 |
240° | \(\frac{4\pi}{3}\) | -2 |
245° | \(\frac{49\pi}{36}\) | -2.36620158 |
250° | \(\frac{25\pi}{18}\) | -2.9238044 |
255° | \(\frac{17\pi}{12}\) | -3.86370331 |
260° | \(\frac{13\pi}{9}\) | -5.75877048 |
265° | \(\frac{53\pi}{36}\) | -11.47371325 |
275° | \(\frac{55\pi}{36}\) | 11.47371325 |
280° | \(\frac{14\pi}{9}\) | 5.75877048 |
285° | \(\frac{19\pi}{12}\) | 3.86370331 |
290° | \(\frac{29\pi}{18}\) | 2.9238044 |
295° | \(\frac{59\pi}{36}\) | 2.36620158 |
300° | \(\frac{5\pi}{3}\) | 2 |
305° | \(\frac{61\pi}{36}\) | 1.7434468 |
310° | \(\frac{31\pi}{18}\) | 1.55572383 |
315° | \(\frac{7\pi}{4}\) | 1.41421356 |
320° | \(\frac{16\pi}{9}\) | 1.30540729 |
325° | \(\frac{65\pi}{36}\) | 1.22077459 |
330° | \(\frac{11\pi}{6}\) | 1.15470054 |
335° | \(\frac{67\pi}{36}\) | 1.10337792 |
340° | \(\frac{17\pi}{9}\) | 1.06417777 |
345° | \(\frac{23\pi}{12}\) | 1.03527618 |
350° | \(\frac{35\pi}{18}\) | 1.01542661 |
355° | \(\frac{71\pi}{36}\) | 1.00381984 |
360° | 2π | 1 |