Secant Calculator

Input any angle or radian to calculate its secant value.

Calculate sec(θ)

Result

Definition and Formula of Secant

The secant function (\(\sec(\theta)\)) is one of the fundamental trigonometric functions. Here, \(\theta\) is the angle, typically measured in radians.

right triangle

In a right triangle, the secant function is defined as the ratio of the hypotenuse to the adjacent side: \( \sec(\theta) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{c}{b} \) This represents the ratio of the hypotenuse to the adjacent side of the given angle.

In the unit circle, the secant function is the reciprocal of the cosine function: \( \sec(\theta) = \frac{1}{\cos(\theta)} \)

Examples

Example 1: Secant Value in a Right Triangle

Find the secant value for an angle \(\theta = 60^\circ\) in a right triangle where the adjacent side measures 2 units and the hypotenuse is 4 units.

Solution:

Using the definition of secant:

\( \sec(60^\circ) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{4}{2} = 2 \)

The secant of \(60^\circ\) is 2.

Example 2: Real-Life Application

Calculate the secant value for a slope with an angle of \(\theta = 30^\circ\).

Solution:

Using the unit circle definition:

\( \sec(30^\circ) = \frac{1}{\cos(30^\circ)} = \frac{1}{0.866} \approx 1.155 \)

The secant of \(30^\circ\) is approximately 1.155.

Secant Graph and Properties

secant graph

Key Characteristics:

  • Periodicity: The secant function has a period of \(2\pi\) (360°), meaning it repeats every \(2\pi\) radians.
  • Even Function: The secant function is symmetric about the y-axis, satisfying \(\sec(-\theta) = \sec(\theta)\).
  • Amplitude: The secant function's values range from negative infinity to positive infinity.
  • Vertical Asymptotes: At \(\theta = \frac{\pi}{2} + n\pi\) (where \(n\) is an integer), secant has vertical asymptotes as \(\cos(\theta) = 0\).
  • Domain and Range
    • Domain: All angles except \(\theta = \frac{\pi}{2} + n\pi\) (\(n \in \mathbb{Z}\)).
    • Range: \((-\infty, -1] \cup [1, \infty)\).

Secant in Quadrants

Quadrant Degrees Radians Sign Range Monotonicity
1st Quadrant\(0^\circ\) - \(90^\circ\)\(0\) - \(\frac{\pi}{2}\)Positive\([1, \infty)\)Increasing
2nd Quadrant\(90^\circ\) - \(180^\circ\)\(\frac{\pi}{2}\) - \(\pi\)Negative\((-\infty, -1]\)Increasing
3rd Quadrant\(180^\circ\) - \(270^\circ\)\(\pi\) - \(\frac{3\pi}{2}\)Negative\([-1, -\infty)\)Decreasing
4th Quadrant\(270^\circ\) - \(360^\circ\)\(\frac{3\pi}{2}\) - \(2\pi\)Positive\((\infty, 1]\)Decreasing

Other Secant Calculations

1. Reciprocal of Secant (Cosine Function)

The reciprocal of the secant function is the cosine function: \( \frac{1}{\sec(\theta)} = \cos(\theta) \) Note: When \(\sec(\theta) = 0\), the cosine function is undefined.

2. Derivative of Secant

The derivative of the secant function is: \( \frac{d}{d\theta} \sec(\theta) = \sec(\theta) \tan(\theta) \) This property is useful in calculus for analyzing rates of change.

3. Integral of Secant

The integral of the secant function is: \( \int \sec(\theta) \, d\theta = \ln|\sec(\theta) + \tan(\theta)| + C \)

4. Inverse Secant (Arcsec)

The inverse secant function (\(\text{arcsec}(x)\)) calculates the angle for a given secant value: \( \theta = \text{arcsec}(x) \)

Common Secant Values Table

Degree Radian Secant Value
01
\(\frac{\pi}{36}\)1.00381984
10°\(\frac{\pi}{18}\)1.01542661
15°\(\frac{\pi}{12}\)1.03527618
20°\(\frac{\pi}{9}\)1.06417777
25°\(\frac{5\pi}{36}\)1.10337792
30°\(\frac{\pi}{6}\)1.15470054
35°\(\frac{7\pi}{36}\)1.22077459
40°\(\frac{2\pi}{9}\)1.30540729
45°\(\frac{\pi}{4}\)1.41421356
50°\(\frac{5\pi}{18}\)1.55572383
55°\(\frac{11\pi}{36}\)1.7434468
60°\(\frac{\pi}{3}\)2
65°\(\frac{13\pi}{36}\)2.36620158
70°\(\frac{7\pi}{18}\)2.9238044
75°\(\frac{5\pi}{12}\)3.86370331
80°\(\frac{4\pi}{9}\)5.75877048
85°\(\frac{17\pi}{36}\)11.47371325
95°\(\frac{19\pi}{36}\)-11.47371325
100°\(\frac{5\pi}{9}\)-5.75877048
105°\(\frac{7\pi}{12}\)-3.86370331
110°\(\frac{11\pi}{18}\)-2.9238044
115°\(\frac{23\pi}{36}\)-2.36620158
120°\(\frac{2\pi}{3}\)-2
125°\(\frac{25\pi}{36}\)-1.7434468
130°\(\frac{13\pi}{18}\)-1.55572383
135°\(\frac{3\pi}{4}\)-1.41421356
140°\(\frac{7\pi}{9}\)-1.30540729
145°\(\frac{29\pi}{36}\)-1.22077459
150°\(\frac{5\pi}{6}\)-1.15470054
155°\(\frac{31\pi}{36}\)-1.10337792
160°\(\frac{8\pi}{9}\)-1.06417777
165°\(\frac{11\pi}{12}\)-1.03527618
170°\(\frac{17\pi}{18}\)-1.01542661
175°\(\frac{35\pi}{36}\)-1.00381984
180°π-1
185°\(\frac{37\pi}{36}\)-1.00381984
190°\(\frac{19\pi}{18}\)-1.01542661
195°\(\frac{13\pi}{12}\)-1.03527618
200°\(\frac{10\pi}{9}\)-1.06417777
205°\(\frac{41\pi}{36}\)-1.10337792
210°\(\frac{7\pi}{6}\)-1.15470054
215°\(\frac{43\pi}{36}\)-1.22077459
220°\(\frac{11\pi}{9}\)-1.30540729
225°\(\frac{5\pi}{4}\)-1.41421356
230°\(\frac{23\pi}{18}\)-1.55572383
235°\(\frac{47\pi}{36}\)-1.7434468
240°\(\frac{4\pi}{3}\)-2
245°\(\frac{49\pi}{36}\)-2.36620158
250°\(\frac{25\pi}{18}\)-2.9238044
255°\(\frac{17\pi}{12}\)-3.86370331
260°\(\frac{13\pi}{9}\)-5.75877048
265°\(\frac{53\pi}{36}\)-11.47371325
275°\(\frac{55\pi}{36}\)11.47371325
280°\(\frac{14\pi}{9}\)5.75877048
285°\(\frac{19\pi}{12}\)3.86370331
290°\(\frac{29\pi}{18}\)2.9238044
295°\(\frac{59\pi}{36}\)2.36620158
300°\(\frac{5\pi}{3}\)2
305°\(\frac{61\pi}{36}\)1.7434468
310°\(\frac{31\pi}{18}\)1.55572383
315°\(\frac{7\pi}{4}\)1.41421356
320°\(\frac{16\pi}{9}\)1.30540729
325°\(\frac{65\pi}{36}\)1.22077459
330°\(\frac{11\pi}{6}\)1.15470054
335°\(\frac{67\pi}{36}\)1.10337792
340°\(\frac{17\pi}{9}\)1.06417777
345°\(\frac{23\pi}{12}\)1.03527618
350°\(\frac{35\pi}{18}\)1.01542661
355°\(\frac{71\pi}{36}\)1.00381984
360°1