Enter an angle in degrees or radians to calculate the sine value quickly.
The sine function is one of the fundamental trigonometric functions widely used in mathematics, physics, and engineering. It is commonly represented as \(\sin(\theta)\), where \(\theta\) is the angle, often measured in radians.
In a right triangle, the sine of an acute angle is the ratio of the length of the side opposite the angle to the hypotenuse. If \(\theta\) is the angle, \(a\) is the opposite side, and \(c\) is the hypotenuse, the sine is calculated as: \( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{a}{c} \)
Sine can also be defined geometrically using the unit circle, a circle with a radius of 1 centered at the origin of a coordinate plane. For an angle \(\theta\), the \(y\)-coordinate of the corresponding point on the circle is the sine value: \( \sin(\theta) = y \)
In a right triangle with \(\theta = 30^\circ\), an opposite side of length 3, and a hypotenuse of length 6: \( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{6} = 0.5 \) Thus, the sine of \(30^\circ\) is 0.5.
You're standing on top of a 50-meter tower and observing a point on the ground at a \(45^\circ\) angle. To find the distance to the point: \( \sin(45^\circ) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{50}{\text{Distance}} \) Since \(\sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707\): \( \text{Distance} = \frac{50}{0.707} \approx 70.71 \, \text{meters} \) The distance to the point is approximately 70.71 meters.
The sine function is periodic and forms a smooth wave, commonly called the sine wave. It describes oscillatory behavior in various fields, such as sound, light, and electromagnetic waves.
The sine function's behavior varies across the four quadrants:
Quadrant | Degrees | Radians | Sign | Range | Monotonicity |
---|---|---|---|---|---|
First Quadrant | \(0^\circ\) - \(90^\circ\) | \(0\) - \(\frac{\pi}{2}\) | Positive | \((0, 1]\) | Increasing |
Second Quadrant | \(90^\circ\) - \(180^\circ\) | \(\frac{\pi}{2}\) - \(\pi\) | Positive | \([1, 0)\) | Decreasing |
Third Quadrant | \(180^\circ\) - \(270^\circ\) | \(\pi\) - \(\frac{3\pi}{2}\) | Negative | \((0, -1]\) | Decreasing |
Fourth Quadrant | \(270^\circ\) - \(360^\circ\) | \(\frac{3\pi}{2}\) - \(2\pi\) | Negative | \([-1, 0)\) | Increasing |
The reciprocal of sine is the cosecant function (\(\csc(\theta)\)): \( \frac{1}{\sin(\theta)} = \csc(\theta) \) Note: Undefined when \(\sin(\theta) = 0\).
The derivative of \(\sin(\theta)\) is the cosine function \(\cos(\theta)\): \( \frac{d}{d\theta} \sin(\theta) = \cos(\theta) \)
The integral of \(\sin(\theta)\) is: \( \int \sin(\theta) \, d\theta = -\cos(\theta) + C \)
The arcsine function (\(\arcsin(x)\)) finds the angle corresponding to a given sine value. It is defined for \([-1, 1]\): \( \theta = \arcsin(x) \)
Degree | Radian | Sine Value |
---|---|---|
0° | 0 | 0 |
5° | \(\frac{\pi}{36}\) | 0.08715574 |
10° | \(\frac{\pi}{18}\) | 0.17364818 |
15° | \(\frac{\pi}{12}\) | 0.25881905 |
20° | \(\frac{\pi}{9}\) | 0.34202014 |
25° | \(\frac{5\pi}{36}\) | 0.42261826 |
30° | \(\frac{\pi}{6}\) | 0.5 |
35° | \(\frac{7\pi}{36}\) | 0.57357644 |
40° | \(\frac{2\pi}{9}\) | 0.64278761 |
45° | \(\frac{\pi}{4}\) | 0.70710678 |
50° | \(\frac{5\pi}{18}\) | 0.76604444 |
55° | \(\frac{11\pi}{36}\) | 0.81915204 |
60° | \(\frac{\pi}{3}\) | 0.8660254 |
65° | \(\frac{13\pi}{36}\) | 0.90630779 |
70° | \(\frac{7\pi}{18}\) | 0.93969262 |
75° | \(\frac{5\pi}{12}\) | 0.96592583 |
80° | \(\frac{4\pi}{9}\) | 0.98480775 |
85° | \(\frac{17\pi}{36}\) | 0.9961947 |
90° | \(\frac{\pi}{2}\) | 1 |
95° | \(\frac{19\pi}{36}\) | 0.9961947 |
100° | \(\frac{5\pi}{9}\) | 0.98480775 |
105° | \(\frac{7\pi}{12}\) | 0.96592583 |
110° | \(\frac{11\pi}{18}\) | 0.93969262 |
115° | \(\frac{23\pi}{36}\) | 0.90630779 |
120° | \(\frac{2\pi}{3}\) | 0.8660254 |
125° | \(\frac{25\pi}{36}\) | 0.81915204 |
130° | \(\frac{13\pi}{18}\) | 0.76604444 |
135° | \(\frac{3\pi}{4}\) | 0.70710678 |
140° | \(\frac{7\pi}{9}\) | 0.64278761 |
145° | \(\frac{29\pi}{36}\) | 0.57357644 |
150° | \(\frac{5\pi}{6}\) | 0.5 |
155° | \(\frac{31\pi}{36}\) | 0.42261826 |
160° | \(\frac{8\pi}{9}\) | 0.34202014 |
165° | \(\frac{11\pi}{12}\) | 0.25881905 |
170° | \(\frac{17\pi}{18}\) | 0.17364818 |
175° | \(\frac{35\pi}{36}\) | 0.08715574 |
180° | π | 0 |
185° | \(\frac{37\pi}{36}\) | -0.08715574 |
190° | \(\frac{19\pi}{18}\) | -0.17364818 |
195° | \(\frac{13\pi}{12}\) | -0.25881905 |
200° | \(\frac{10\pi}{9}\) | -0.34202014 |
205° | \(\frac{41\pi}{36}\) | -0.42261826 |
210° | \(\frac{7\pi}{6}\) | -0.5 |
215° | \(\frac{43\pi}{36}\) | -0.57357644 |
220° | \(\frac{11\pi}{9}\) | -0.64278761 |
225° | \(\frac{5\pi}{4}\) | -0.70710678 |
230° | \(\frac{23\pi}{18}\) | -0.76604444 |
235° | \(\frac{47\pi}{36}\) | -0.81915204 |
240° | \(\frac{4\pi}{3}\) | -0.8660254 |
245° | \(\frac{49\pi}{36}\) | -0.90630779 |
250° | \(\frac{25\pi}{18}\) | -0.93969262 |
255° | \(\frac{17\pi}{12}\) | -0.96592583 |
260° | \(\frac{13\pi}{9}\) | -0.98480775 |
265° | \(\frac{53\pi}{36}\) | -0.9961947 |
270° | \(\frac{3\pi}{2}\) | -1 |
275° | \(\frac{55\pi}{36}\) | -0.9961947 |
280° | \(\frac{14\pi}{9}\) | -0.98480775 |
285° | \(\frac{19\pi}{12}\) | -0.96592583 |
290° | \(\frac{29\pi}{18}\) | -0.93969262 |
295° | \(\frac{59\pi}{36}\) | -0.90630779 |
300° | \(\frac{5\pi}{3}\) | -0.8660254 |
305° | \(\frac{61\pi}{36}\) | -0.81915204 |
310° | \(\frac{31\pi}{18}\) | -0.76604444 |
315° | \(\frac{7\pi}{4}\) | -0.70710678 |
320° | \(\frac{16\pi}{9}\) | -0.64278761 |
325° | \(\frac{65\pi}{36}\) | -0.57357644 |
330° | \(\frac{11\pi}{6}\) | -0.5 |
335° | \(\frac{67\pi}{36}\) | -0.42261826 |
340° | \(\frac{17\pi}{9}\) | -0.34202014 |
345° | \(\frac{23\pi}{12}\) | -0.25881905 |
350° | \(\frac{35\pi}{18}\) | -0.17364818 |
355° | \(\frac{71\pi}{36}\) | -0.08715574 |
360° | 2π | 0 |