Sine Calculator

Enter an angle in degrees or radians to calculate the sine value quickly.

Calculate Sin(θ)

Result

Definition of Sine Function

The sine function is one of the fundamental trigonometric functions widely used in mathematics, physics, and engineering. It is commonly represented as \(\sin(\theta)\), where \(\theta\) is the angle, often measured in radians.

right triangle

In a right triangle, the sine of an acute angle is the ratio of the length of the side opposite the angle to the hypotenuse. If \(\theta\) is the angle, \(a\) is the opposite side, and \(c\) is the hypotenuse, the sine is calculated as: \( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{a}{c} \)

Sine can also be defined geometrically using the unit circle, a circle with a radius of 1 centered at the origin of a coordinate plane. For an angle \(\theta\), the \(y\)-coordinate of the corresponding point on the circle is the sine value: \( \sin(\theta) = y \)

How to Calculate Sine Values

Example 1: Calculating Sine in a Triangle

In a right triangle with \(\theta = 30^\circ\), an opposite side of length 3, and a hypotenuse of length 6: \( \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{6} = 0.5 \) Thus, the sine of \(30^\circ\) is 0.5.

Example 2: Practical Application

You're standing on top of a 50-meter tower and observing a point on the ground at a \(45^\circ\) angle. To find the distance to the point: \( \sin(45^\circ) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{50}{\text{Distance}} \) Since \(\sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707\): \( \text{Distance} = \frac{50}{0.707} \approx 70.71 \, \text{meters} \) The distance to the point is approximately 70.71 meters.

Sine Function Graph and Properties

sine graph

The sine function is periodic and forms a smooth wave, commonly called the sine wave. It describes oscillatory behavior in various fields, such as sound, light, and electromagnetic waves.

  • Periodicity: The sine function repeats every \(2\pi\) radians or 360°: \( \sin(\theta + 2\pi) = \sin(\theta) \)

  • Symmetry: The sine function is symmetric about the origin, making it an odd function: \(\sin(-\theta) = -\sin(\theta)\).
  • Amplitude: The amplitude (maximum deviation from zero) is 1.
  • Wave Peaks and Valleys: Peaks occur at \(\theta = \frac{\pi}{2} + 2n\pi\) (\(\sin(\theta) = 1\)). Valleys occur at \(\theta = \frac{3\pi}{2} + 2n\pi\) (\(\sin(\theta) = -1\)).
  • Domain and Range: The domain of the sine function is all real numbers \(\mathbb{R}\). The sine function oscillates between \(-1\) and \(1\).

Quadrant Characteristics of the Sine Function

The sine function's behavior varies across the four quadrants:

Quadrant Degrees Radians Sign Range Monotonicity
First Quadrant\(0^\circ\) - \(90^\circ\)\(0\) - \(\frac{\pi}{2}\)Positive\((0, 1]\)Increasing
Second Quadrant\(90^\circ\) - \(180^\circ\)\(\frac{\pi}{2}\) - \(\pi\)Positive\([1, 0)\)Decreasing
Third Quadrant\(180^\circ\) - \(270^\circ\)\(\pi\) - \(\frac{3\pi}{2}\)Negative \((0, -1]\)Decreasing
Fourth Quadrant\(270^\circ\) - \(360^\circ\)\(\frac{3\pi}{2}\) - \(2\pi\)Negative\([-1, 0)\)Increasing

Other Sine Calculations

1. Reciprocal Function (Cosecant)

The reciprocal of sine is the cosecant function (\(\csc(\theta)\)): \( \frac{1}{\sin(\theta)} = \csc(\theta) \) Note: Undefined when \(\sin(\theta) = 0\).

2. Derivative of Sine

The derivative of \(\sin(\theta)\) is the cosine function \(\cos(\theta)\): \( \frac{d}{d\theta} \sin(\theta) = \cos(\theta) \)

3. Integral of Sine

The integral of \(\sin(\theta)\) is: \( \int \sin(\theta) \, d\theta = -\cos(\theta) + C \)

4. Inverse Sine (Arcsine)

The arcsine function (\(\arcsin(x)\)) finds the angle corresponding to a given sine value. It is defined for \([-1, 1]\): \( \theta = \arcsin(x) \)

Common Sine Values Table

Degree Radian Sine Value
00
\(\frac{\pi}{36}\)0.08715574
10°\(\frac{\pi}{18}\)0.17364818
15°\(\frac{\pi}{12}\)0.25881905
20°\(\frac{\pi}{9}\)0.34202014
25°\(\frac{5\pi}{36}\)0.42261826
30°\(\frac{\pi}{6}\)0.5
35°\(\frac{7\pi}{36}\)0.57357644
40°\(\frac{2\pi}{9}\)0.64278761
45°\(\frac{\pi}{4}\)0.70710678
50°\(\frac{5\pi}{18}\)0.76604444
55°\(\frac{11\pi}{36}\)0.81915204
60°\(\frac{\pi}{3}\)0.8660254
65°\(\frac{13\pi}{36}\)0.90630779
70°\(\frac{7\pi}{18}\)0.93969262
75°\(\frac{5\pi}{12}\)0.96592583
80°\(\frac{4\pi}{9}\)0.98480775
85°\(\frac{17\pi}{36}\)0.9961947
90°\(\frac{\pi}{2}\)1
95°\(\frac{19\pi}{36}\)0.9961947
100°\(\frac{5\pi}{9}\)0.98480775
105°\(\frac{7\pi}{12}\)0.96592583
110°\(\frac{11\pi}{18}\)0.93969262
115°\(\frac{23\pi}{36}\)0.90630779
120°\(\frac{2\pi}{3}\)0.8660254
125°\(\frac{25\pi}{36}\)0.81915204
130°\(\frac{13\pi}{18}\)0.76604444
135°\(\frac{3\pi}{4}\)0.70710678
140°\(\frac{7\pi}{9}\)0.64278761
145°\(\frac{29\pi}{36}\)0.57357644
150°\(\frac{5\pi}{6}\)0.5
155°\(\frac{31\pi}{36}\)0.42261826
160°\(\frac{8\pi}{9}\)0.34202014
165°\(\frac{11\pi}{12}\)0.25881905
170°\(\frac{17\pi}{18}\)0.17364818
175°\(\frac{35\pi}{36}\)0.08715574
180°π0
185°\(\frac{37\pi}{36}\)-0.08715574
190°\(\frac{19\pi}{18}\)-0.17364818
195°\(\frac{13\pi}{12}\)-0.25881905
200°\(\frac{10\pi}{9}\)-0.34202014
205°\(\frac{41\pi}{36}\)-0.42261826
210°\(\frac{7\pi}{6}\)-0.5
215°\(\frac{43\pi}{36}\)-0.57357644
220°\(\frac{11\pi}{9}\)-0.64278761
225°\(\frac{5\pi}{4}\)-0.70710678
230°\(\frac{23\pi}{18}\)-0.76604444
235°\(\frac{47\pi}{36}\)-0.81915204
240°\(\frac{4\pi}{3}\)-0.8660254
245°\(\frac{49\pi}{36}\)-0.90630779
250°\(\frac{25\pi}{18}\)-0.93969262
255°\(\frac{17\pi}{12}\)-0.96592583
260°\(\frac{13\pi}{9}\)-0.98480775
265°\(\frac{53\pi}{36}\)-0.9961947
270°\(\frac{3\pi}{2}\)-1
275°\(\frac{55\pi}{36}\)-0.9961947
280°\(\frac{14\pi}{9}\)-0.98480775
285°\(\frac{19\pi}{12}\)-0.96592583
290°\(\frac{29\pi}{18}\)-0.93969262
295°\(\frac{59\pi}{36}\)-0.90630779
300°\(\frac{5\pi}{3}\)-0.8660254
305°\(\frac{61\pi}{36}\)-0.81915204
310°\(\frac{31\pi}{18}\)-0.76604444
315°\(\frac{7\pi}{4}\)-0.70710678
320°\(\frac{16\pi}{9}\)-0.64278761
325°\(\frac{65\pi}{36}\)-0.57357644
330°\(\frac{11\pi}{6}\)-0.5
335°\(\frac{67\pi}{36}\)-0.42261826
340°\(\frac{17\pi}{9}\)-0.34202014
345°\(\frac{23\pi}{12}\)-0.25881905
350°\(\frac{35\pi}{18}\)-0.17364818
355°\(\frac{71\pi}{36}\)-0.08715574
360°0