Tangent Calculator

Input an angle in degrees or radians to calculate the corresponding tangent value.

Calculate tan(θ)

Result

Definition and Formula of Tangent

The tangent function, denoted as \(\tan(\theta)\), is a fundamental trigonometric function used to describe the relationship between an angle and the sides of a right triangle. The angle \(\theta\) is usually measured in radians.

right triangle

In a right triangle, the tangent of an angle \(\theta\) is defined as the ratio of the opposite side to the adjacent side: \( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{a}{b} \) This represents the vertical to horizontal component ratio of the angle.

On the unit circle, the tangent function is defined as the ratio of the y-coordinate to the x-coordinate of the point corresponding to the angle \(\theta\): \( \tan(\theta) = \frac{y}{x} \) Here, \(x\) and \(y\) are the coordinates of the point on the unit circle.

Examples

Example 1: Calculating Tangent Using a Right Triangle

A right triangle has one acute angle \(\theta = 45^\circ\), with the opposite side measuring 4 units and the adjacent side measuring 4 units. Calculate the tangent of this angle.

Solution:

Using the definition of tangent:

\( \tan(45^\circ) = \frac{4}{4} = 1 \)

Thus, \(\tan(45^\circ) = 1\).

Example 2: Tangent in Practical Applications

You observe a tower that is 30 meters tall from a horizontal distance of 40 meters. Calculate the angle \(\theta\) between your line of sight and the ground.

Solution:

Using the tangent definition:

\( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{30}{40} = 0.75 \)

Using the inverse tangent function:

\( \theta = \arctan(0.75) \approx 36.87^\circ \)

The angle is approximately \(36.87^\circ\).

Properties and Graph of Tangent

tan graph

Key Characteristics:

  • Periodicity: The tangent function repeats every \(\pi\) radians (\(180^\circ\)), \(\tan(\theta + n\pi) = \tan(\theta)\), where \(n\) is an integer.
  • Monotonicity: The tangent function is monotonically increasing within each period.
  • Odd Function: Tangent satisfies \(\tan(-\theta) = -\tan(\theta)\), meaning it is symmetric about the origin.
  • Amplitude: The tangent function has no amplitude limit, as its range is all real numbers (\(\mathbb{R}\)).
  • Asymptotes: Vertical asymptotes occur at \(\theta = \frac{\pi}{2} + n\pi\), where \(n\) is an integer.
  • Domain and Range: The domain of the tangent function is all angles \(\theta\) (except \(\frac{\pi}{2} + n\pi\)), and the range is \(\mathbb{R}\) (all real numbers).

Quadrant Properties

The tangent function's sign varies by quadrant:

Quadrant Degrees Radians Sign Range Monotonicity
1st Quadrant\(0^\circ\) - \(90^\circ\)\(0\) - \(\frac{\pi}{2}\)Positive\((0, \infty)\)Increasing
2nd Quadrant\(90^\circ\) - \(180^\circ\)\(\frac{\pi}{2}\) - \(\pi\)Negative\((-\infty, 0)\)Increasing
3rd Quadrant\(180^\circ\) - \(270^\circ\)\(\pi\) - \(\frac{3\pi}{2}\)Positive\((0, \infty)\)Increasing
4th Quadrant\(270^\circ\) - \(360^\circ\)\(\frac{3\pi}{2}\) - \(2\pi\)Negative\((-\infty, 0)\)Increasing

Additional Tangent Calculations

1. Reciprocal of Tangent (Cotangent)

The reciprocal of tangent is the cotangent function: \( \frac{1}{\tan(\theta)} = \cot(\theta) = \frac{\text{Adjacent}}{\text{Opposite}} \) Undefined when \(\tan(\theta) = 0\).

2. Derivative of Tangent

The derivative of \(\tan(\theta)\) is the square of the secant function: \( \frac{d}{d\theta} \tan(\theta) = \sec^2(\theta) \) This property is useful in calculus for analyzing rate changes.

3. Integral of Tangent

The integral of \(\tan(\theta)\) is given by: \( \int \tan(\theta) \, d\theta = -\ln|\cos(\theta)| + C \) This integral is frequently used in physics and engineering.

4. Inverse Tangent (arctan)

The arctangent function computes the angle corresponding to a tangent value. Its domain is all real numbers, and its range is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\): \( \theta = \arctan(x) \)

Common Tangent Values

Degree Radian Tangent Value
00.0
\(\frac{\pi}{36}\)0.08748866
10°\(\frac{\pi}{18}\)0.17632698
15°\(\frac{\pi}{12}\)0.26794919
20°\(\frac{\pi}{9}\)0.36397023
25°\(\frac{5\pi}{36}\)0.46630766
30°\(\frac{\pi}{6}\)0.57735027
35°\(\frac{7\pi}{36}\)0.70020754
40°\(\frac{2\pi}{9}\)0.83909963
45°\(\frac{\pi}{4}\)1
50°\(\frac{5\pi}{18}\)1.19175359
55°\(\frac{11\pi}{36}\)1.42814801
60°\(\frac{\pi}{3}\)1.73205081
65°\(\frac{13\pi}{36}\)2.14450692
70°\(\frac{7\pi}{18}\)2.74747742
75°\(\frac{5\pi}{12}\)3.73205081
80°\(\frac{4\pi}{9}\)5.67128182
85°\(\frac{17\pi}{36}\)11.4300523
95°\(\frac{19\pi}{36}\)-11.4300523
100°\(\frac{5\pi}{9}\)-5.67128182
105°\(\frac{7\pi}{12}\)-3.73205081
110°\(\frac{11\pi}{18}\)-2.74747742
115°\(\frac{23\pi}{36}\)-2.14450692
120°\(\frac{2\pi}{3}\)-1.73205081
125°\(\frac{25\pi}{36}\)-1.42814801
130°\(\frac{13\pi}{18}\)-1.19175359
135°\(\frac{3\pi}{4}\)-1
140°\(\frac{7\pi}{9}\)-0.83909963
145°\(\frac{29\pi}{36}\)-0.70020754
150°\(\frac{5\pi}{6}\)-0.57735027
155°\(\frac{31\pi}{36}\)-0.46630766
160°\(\frac{8\pi}{9}\)-0.36397023
165°\(\frac{11\pi}{12}\)-0.26794919
170°\(\frac{17\pi}{18}\)-0.17632698
175°\(\frac{35\pi}{36}\)-0.08748866
180°π0
185°\(\frac{37\pi}{36}\)0.08748866
190°\(\frac{19\pi}{18}\)0.17632698
195°\(\frac{13\pi}{12}\)0.26794919
200°\(\frac{10\pi}{9}\)0.36397023
205°\(\frac{41\pi}{36}\)0.46630766
210°\(\frac{7\pi}{6}\)0.57735027
215°\(\frac{43\pi}{36}\)0.70020754
220°\(\frac{11\pi}{9}\)0.83909963
225°\(\frac{5\pi}{4}\)1
230°\(\frac{23\pi}{18}\)1.19175359
235°\(\frac{47\pi}{36}\)1.42814801
240°\(\frac{4\pi}{3}\)1.73205081
245°\(\frac{49\pi}{36}\)2.14450692
250°\(\frac{25\pi}{18}\)2.74747742
255°\(\frac{17\pi}{12}\)3.73205081
260°\(\frac{13\pi}{9}\)5.67128182
265°\(\frac{53\pi}{36}\)11.4300523
275°\(\frac{55\pi}{36}\)-11.4300523
280°\(\frac{14\pi}{9}\)-5.67128182
285°\(\frac{19\pi}{12}\)-3.73205081
290°\(\frac{29\pi}{18}\)-2.74747742
295°\(\frac{59\pi}{36}\)-2.14450692
300°\(\frac{5\pi}{3}\)-1.73205081
305°\(\frac{61\pi}{36}\)-1.42814801
310°\(\frac{31\pi}{18}\)-1.19175359
315°\(\frac{7\pi}{4}\)-1
320°\(\frac{16\pi}{9}\)-0.83909963
325°\(\frac{65\pi}{36}\)-0.70020754
330°\(\frac{11\pi}{6}\)-0.57735027
335°\(\frac{67\pi}{36}\)-0.46630766
340°\(\frac{17\pi}{9}\)-0.36397023
345°\(\frac{23\pi}{12}\)-0.26794919
350°\(\frac{35\pi}{18}\)-0.17632698
355°\(\frac{71\pi}{36}\)-0.08748866
360°0