輸入任意角度或弧度,計算對應的餘割值。
餘割函數(Cosecant function)通常用符號 \(\csc(\theta)\) 表示,其中 \(\theta\) 是角度,通常以弧度為單位。
在直角三角形中,餘割函數定義為角度 \(\theta\) 的 斜邊與對邊 之比: \( \csc(\theta) = \frac{\text{斜邊}}{\text{對邊}} = \frac{c}{a} \) 即餘割函數表示一個角度的斜邊與對邊的比值。
在單位圓中,餘割函數定義為單位圓上對應角度 \(\theta\) 的點的斜邊與縱座標的比值: \( \csc(\theta) = \frac{1}{\sin(\theta)} \) 即餘割函數是正弦函數的倒數。
假設有一個直角三角形,其中一個銳角 \(\theta = 30^\circ\),對邊的長度為 5,斜邊的長度為 10,求對應的餘割值。
解答:
根據餘割的定義:
\( \csc(30^\circ) = \frac{10}{5} = 2 \)
因此,角度 \(30^\circ\) 的餘割值是 2。
假設你在計算一個山坡的坡度,該坡度的角度為 \(\theta = 60^\circ\),要求計算對應的餘割值。
解答:
根據餘割的定義:
\( \csc(60^\circ) = \frac{1}{\sin(60^\circ)} = \frac{1}{0.866} \approx 1.155 \)
因此,角度 \(60^\circ\) 的餘割值約為 1.155。
餘割函數的圖形是週期性波動的,並且在每個週期內有垂直漸近線。餘割圖形具有以下特性:
餘割函數在不同象限中的符號和性質如下表所示:
象限 | 角度 | 弧度 | 值符號 | 值範圍 | 單調性 |
---|---|---|---|---|---|
第一象限 | \(0^\circ\) - \(90^\circ\) | \(0\) - \(\frac{\pi}{2}\) | + | \((\infty, 1]\) | 遞減 |
第二象限 | \(90^\circ\) - \(180^\circ\) | \(\frac{\pi}{2}\) - \(\pi\) | + | \([1, \infty)\) | 遞增 |
第三象限 | \(180^\circ\) - \(270^\circ\) | \(\pi\) - \(\frac{3\pi}{2}\) | - | \((-\infty, -1]\) | 遞增 |
第四象限 | \(270^\circ\) - \(360^\circ\) | \(\frac{3\pi}{2}\) - \(2\pi\) | - | \([-1, -\infty)\) | 遞減 |
餘割函數的倒數是正弦函數(sine,記作 \(\sin(\theta)\)),定義為: \( \frac{1}{\csc(\theta)} = \sin(\theta) \) 當 \(\csc(\theta) = 0\) 時,正弦函數無定義。
餘割函數的導數是餘割函數和餘切函數的乘積,即: \( \frac{d}{d\theta} \csc(\theta) = -\csc(\theta) \cot(\theta) \)
餘割函數的積分是: \( \int \csc(\theta) \, d\theta = -\ln|\csc(\theta) + \cot(\theta)| + C \)
反餘割函數(arccosecant,記作 \(\text{arccsc}(x)\))用於求解給定餘割值對應的角度,即: \( \theta = \text{arccsc}(x) \) 其中 \(x\) 為餘割值。
角度 | 弧度 | 餘割值 |
---|---|---|
5° | \(\frac{\pi}{36}\) | 11.47371325 |
10° | \(\frac{\pi}{18}\) | 5.75877048 |
15° | \(\frac{\pi}{12}\) | 3.86370331 |
20° | \(\frac{\pi}{9}\) | 2.9238044 |
25° | \(\frac{5\pi}{36}\) | 2.36620158 |
30° | \(\frac{\pi}{6}\) | 2 |
35° | \(\frac{7\pi}{36}\) | 1.7434468 |
40° | \(\frac{2\pi}{9}\) | 1.55572383 |
45° | \(\frac{\pi}{4}\) | 1.41421356 |
50° | \(\frac{5\pi}{18}\) | 1.30540729 |
55° | \(\frac{11\pi}{36}\) | 1.22077459 |
60° | \(\frac{\pi}{3}\) | 1.15470054 |
65° | \(\frac{13\pi}{36}\) | 1.10337792 |
70° | \(\frac{7\pi}{18}\) | 1.06417777 |
75° | \(\frac{5\pi}{12}\) | 1.03527618 |
80° | \(\frac{4\pi}{9}\) | 1.01542661 |
85° | \(\frac{17\pi}{36}\) | 1.00381984 |
90° | \(\frac{\pi}{2}\) | 1 |
95° | \(\frac{19\pi}{36}\) | 1.00381984 |
100° | \(\frac{5\pi}{9}\) | 1.01542661 |
105° | \(\frac{7\pi}{12}\) | 1.03527618 |
110° | \(\frac{11\pi}{18}\) | 1.06417777 |
115° | \(\frac{23\pi}{36}\) | 1.10337792 |
120° | \(\frac{2\pi}{3}\) | 1.15470054 |
125° | \(\frac{25\pi}{36}\) | 1.22077459 |
130° | \(\frac{13\pi}{18}\) | 1.30540729 |
135° | \(\frac{3\pi}{4}\) | 1.41421356 |
140° | \(\frac{7\pi}{9}\) | 1.55572383 |
145° | \(\frac{29\pi}{36}\) | 1.7434468 |
150° | \(\frac{5\pi}{6}\) | 2 |
155° | \(\frac{31\pi}{36}\) | 2.36620158 |
160° | \(\frac{8\pi}{9}\) | 2.9238044 |
165° | \(\frac{11\pi}{12}\) | 3.86370331 |
170° | \(\frac{17\pi}{18}\) | 5.75877048 |
175° | \(\frac{35\pi}{36}\) | 11.47371325 |
185° | \(\frac{37\pi}{36}\) | -11.47371325 |
190° | \(\frac{19\pi}{18}\) | -5.75877048 |
195° | \(\frac{13\pi}{12}\) | -3.86370331 |
200° | \(\frac{10\pi}{9}\) | -2.9238044 |
205° | \(\frac{41\pi}{36}\) | -2.36620158 |
210° | \(\frac{7\pi}{6}\) | -2 |
215° | \(\frac{43\pi}{36}\) | -1.7434468 |
220° | \(\frac{11\pi}{9}\) | -1.55572383 |
225° | \(\frac{5\pi}{4}\) | -1.41421356 |
230° | \(\frac{23\pi}{18}\) | -1.30540729 |
235° | \(\frac{47\pi}{36}\) | -1.22077459 |
240° | \(\frac{4\pi}{3}\) | -1.15470054 |
245° | \(\frac{49\pi}{36}\) | -1.10337792 |
250° | \(\frac{25\pi}{18}\) | -1.06417777 |
255° | \(\frac{17\pi}{12}\) | -1.03527618 |
260° | \(\frac{13\pi}{9}\) | -1.01542661 |
265° | \(\frac{53\pi}{36}\) | -1.00381984 |
270° | \(\frac{3\pi}{2}\) | -1 |
275° | \(\frac{55\pi}{36}\) | -1.00381984 |
280° | \(\frac{14\pi}{9}\) | -1.01542661 |
285° | \(\frac{19\pi}{12}\) | -1.03527618 |
290° | \(\frac{29\pi}{18}\) | -1.06417777 |
295° | \(\frac{59\pi}{36}\) | -1.10337792 |
300° | \(\frac{5\pi}{3}\) | -1.15470054 |
305° | \(\frac{61\pi}{36}\) | -1.22077459 |
310° | \(\frac{31\pi}{18}\) | -1.30540729 |
315° | \(\frac{7\pi}{4}\) | -1.41421356 |
320° | \(\frac{16\pi}{9}\) | -1.55572383 |
325° | \(\frac{65\pi}{36}\) | -1.7434468 |
330° | \(\frac{11\pi}{6}\) | -2 |
335° | \(\frac{67\pi}{36}\) | -2.36620158 |
340° | \(\frac{17\pi}{9}\) | -2.9238044 |
345° | \(\frac{23\pi}{12}\) | -3.86370331 |
350° | \(\frac{35\pi}{18}\) | -5.75877048 |
355° | \(\frac{71\pi}{36}\) | -11.47371325 |