餘矢計算器

輸入角度或弧度,計算對應的餘矢值。

餘矢計算

結果

什麼是餘矢函數

餘矢函數(Coversine function),常用符號 \(\text{coversin}(\theta)\) 或 \(\text{versin}(\pi/2 - \theta)\) 表示,是一種較少使用的三角函數。在直角三角形中,餘矢可以定義為: \( \text{coversin}(\theta) = 1 - \sin(\theta) \) 這一公式表明餘矢是正弦函數的偏移版本,可以視為表示某一角度的正弦偏差。

例如,\(\theta = 30^\circ\): \( \text{coversin}(30^\circ) = 1 - \sin(30^\circ) = 1 - 0.5 = 0.5 \)

餘矢函數圖形

coversine graph

餘矢函數的圖形呈現為正弦波的偏移曲線,具有以下特性:

  • 周期性:餘矢函數的周期為 \(2\pi\)。
  • 定義域:餘矢函數的定義域為所有實數 \(\mathbb{R}\)。
  • 值域:\(\text{coversin}(\theta) \in [0, 2]\)。
  • 振幅:最大值為 2,最小值為 0。

餘矢函數轉換表

角度 弧度 餘矢值
01
\(\frac{\pi}{36}\)0.91284426
10°\(\frac{\pi}{18}\)0.82635182
15°\(\frac{\pi}{12}\)0.74118095
20°\(\frac{\pi}{9}\)0.65797986
25°\(\frac{5\pi}{36}\)0.57738174
30°\(\frac{\pi}{6}\)0.5
35°\(\frac{7\pi}{36}\)0.42642356
40°\(\frac{2\pi}{9}\)0.35721239
45°\(\frac{\pi}{4}\)0.29289322
50°\(\frac{5\pi}{18}\)0.23395556
55°\(\frac{11\pi}{36}\)0.18084796
60°\(\frac{\pi}{3}\)0.1339746
65°\(\frac{13\pi}{36}\)0.09369221
70°\(\frac{7\pi}{18}\)0.06030738
75°\(\frac{5\pi}{12}\)0.03407417
80°\(\frac{4\pi}{9}\)0.01519225
85°\(\frac{17\pi}{36}\)0.0038053
90°\(\frac{\pi}{2}\)0
95°\(\frac{19\pi}{36}\)0.0038053
100°\(\frac{5\pi}{9}\)0.01519225
105°\(\frac{7\pi}{12}\)0.03407417
110°\(\frac{11\pi}{18}\)0.06030738
115°\(\frac{23\pi}{36}\)0.09369221
120°\(\frac{2\pi}{3}\)0.1339746
125°\(\frac{25\pi}{36}\)0.18084796
130°\(\frac{13\pi}{18}\)0.23395556
135°\(\frac{3\pi}{4}\)0.29289322
140°\(\frac{7\pi}{9}\)0.35721239
145°\(\frac{29\pi}{36}\)0.42642356
150°\(\frac{5\pi}{6}\)0.5
155°\(\frac{31\pi}{36}\)0.57738174
160°\(\frac{8\pi}{9}\)0.65797986
165°\(\frac{11\pi}{12}\)0.74118095
170°\(\frac{17\pi}{18}\)0.82635182
175°\(\frac{35\pi}{36}\)0.91284426
180°π1
185°\(\frac{37\pi}{36}\)1.08715574
190°\(\frac{19\pi}{18}\)1.17364818
195°\(\frac{13\pi}{12}\)1.25881905
200°\(\frac{10\pi}{9}\)1.34202014
205°\(\frac{41\pi}{36}\)1.42261826
210°\(\frac{7\pi}{6}\)1.5
215°\(\frac{43\pi}{36}\)1.57357644
220°\(\frac{11\pi}{9}\)1.64278761
225°\(\frac{5\pi}{4}\)1.70710678
230°\(\frac{23\pi}{18}\)1.76604444
235°\(\frac{47\pi}{36}\)1.81915204
240°\(\frac{4\pi}{3}\)1.8660254
245°\(\frac{49\pi}{36}\)1.90630779
250°\(\frac{25\pi}{18}\)1.93969262
255°\(\frac{17\pi}{12}\)1.96592583
260°\(\frac{13\pi}{9}\)1.98480775
265°\(\frac{53\pi}{36}\)1.9961947
270°\(\frac{3\pi}{2}\)2
275°\(\frac{55\pi}{36}\)1.9961947
280°\(\frac{14\pi}{9}\)1.98480775
285°\(\frac{19\pi}{12}\)1.96592583
290°\(\frac{29\pi}{18}\)1.93969262
295°\(\frac{59\pi}{36}\)1.90630779
300°\(\frac{5\pi}{3}\)1.8660254
305°\(\frac{61\pi}{36}\)1.81915204
310°\(\frac{31\pi}{18}\)1.76604444
315°\(\frac{7\pi}{4}\)1.70710678
320°\(\frac{16\pi}{9}\)1.64278761
325°\(\frac{65\pi}{36}\)1.57357644
330°\(\frac{11\pi}{6}\)1.5
335°\(\frac{67\pi}{36}\)1.42261826
340°\(\frac{17\pi}{9}\)1.34202014
345°\(\frac{23\pi}{12}\)1.25881905
350°\(\frac{35\pi}{18}\)1.17364818
355°\(\frac{71\pi}{36}\)1.08715574
360°1