輸入一個數字,判斷其是否為佩爾數,或輸入N計算第N項佩爾數與總和。
佩爾數是一種特定的數列,定義為:佩爾數 \( P_n \) 由以下遞推關係生成:
解答:
計算佩爾數列:
\( P_0 = 0 \)
\( P_1 = 1 \)
\( P_2 = 2P_1 + P_0 = 2 \times 1 + 0 = 2 \)
\( P_3 = 2P_2 + P_1 = 2 \times 2 + 1 = 5 \)
\( P_4 = 2P_3 + P_2 = 2 \times 5 + 2 = 12 \)
結果:
\( P_4 \) 已經超過 6 了,所以,6 不是佩爾數。
解答:
計算佩爾數列:
\( P_0 = 0 \)
\( P_1 = 1 \)
\( P_2 = 2P_1 + P_0 = 2 \times 1 + 0 = 2 \)
\( P_3 = 2P_2 + P_1 = 2 \times 2 + 1 = 5 \)
\( P_4 = 2P_3 + P_2 = 2 \times 5 + 2 = 12 \)
\( P_5 = 2P_4 + P_3 = 2 \times 12 + 5 = 29 \)
\( P_6 = 2P_5 + P_4 = 2 \times 29 + 12 = 70 \)
結果:
\( P_6 = 70 \),所以,70 是佩爾數。
解答:
計算佩爾數列:
\( P_0 = 0 \)
\( P_1 = 1 \)
\( P_2 = 2P_1 + P_0 = 2 \times 1 + 0 = 2 \)
\( P_3 = 2P_2 + P_1 = 2 \times 2 + 1 = 5 \)
\( P_4 = 2P_3 + P_2 = 2 \times 5 + 2 = 12 \)
\( P_5 = 2P_4 + P_3 = 2 \times 12 + 5 = 29 \)
\( P_6 = 2P_5 + P_4 = 2 \times 29 + 12 = 70 \)
\( P_7 = 2P_6 + P_5 = 2 \times 70 + 29 = 169 \)
\( P_8 = 2P_7 + P_6 = 2 \times 169 + 70 = 408 \)
結果:
第 8 項佩爾數是 408,其總和為 696。