反余切计算器

输入余切值,计算对应的角度和弧度。

反余切计算

角度

弧度

什么是反余切函数

反余切函数(Arccotangent function)是余切函数的反函数,通常用符号 \(\operatorname{arccot}(x)\) 或 \(\cot^{-1}(x)\) 表示,用于计算给定余切值对应的角度。对于余切函数 \(y = \cot(\theta)\),反余切函数定义为: \( \theta = \operatorname{arccot}(x) \) 其中,\(-\infty < x < \infty\) 且 \(0 < \theta < \pi\)。反余切的值域为 \((0, \pi)\),使得反余切函数唯一且可逆。

示例

例子 1:假设已知 \(\cot(\theta) = 1\),求对应的角度 \(\theta\):

解答:

\( \theta = \operatorname{arccot}(1) = \frac{\pi}{4} \approx 0.7854 \, \text{弧度} \)

因此,余切值为 1 的角度是 \(\frac{\pi}{4}\) 或 45°。

例子 2:已知 \(\cot(\theta) = -1\),求对应的角度 \(\theta\):

解答:

\( \theta = \operatorname{arccot}(-1) = \frac{3\pi}{4} \approx 2.3562 \, \text{弧度} \)

所以,余切值为 -1 的角度是 \(\frac{3\pi}{4}\) 或 135°。

反余切函数的图形

arccotangent graph

反余切函数的图形是一条单调递减的曲线,范围从 \(-\infty\) 到 \(+\infty\),其值域为 \((0, \pi)\)。图形的主要特性包括:

  • 单调性:在定义域内,反余切函数是单调递减的。
  • 奇函数特性:反余切满足 \(\operatorname{arccot}(-x) = \pi - \operatorname{arccot}(x)\),即关于 \(\pi/2\) 对称。

反余切函数转换表格

余切值 角度 弧度
57.28996163\(\frac{\pi}{180}\)
28.63625328\(\frac{\pi}{90}\)
19.08113669\(\frac{\pi}{60}\)
14.30066626\(\frac{\pi}{45}\)
11.4300523\(\frac{\pi}{36}\)
9.51436445\(\frac{\pi}{30}\)
8.14434643\(\frac{7\pi}{180}\)
7.11536972\(\frac{2\pi}{45}\)
6.31375151\(\frac{\pi}{20}\)
5.6712818210°\(\frac{\pi}{18}\)
5.1445540211°\(\frac{11\pi}{180}\)
4.7046301112°\(\frac{\pi}{15}\)
4.3314758713°\(\frac{13\pi}{180}\)
4.0107809314°\(\frac{7\pi}{90}\)
3.7320508115°\(\frac{\pi}{12}\)
3.4874144416°\(\frac{4\pi}{45}\)
3.2708526217°\(\frac{17\pi}{180}\)
3.0776835418°\(\frac{\pi}{10}\)
2.9042108819°\(\frac{19\pi}{180}\)
2.7474774220°\(\frac{\pi}{9}\)
2.6050890621°\(\frac{7\pi}{60}\)
2.4750868522°\(\frac{11\pi}{90}\)
2.3558523723°\(\frac{23\pi}{180}\)
2.2460367724°\(\frac{2\pi}{15}\)
2.1445069225°\(\frac{5\pi}{36}\)
2.0503038426°\(\frac{13\pi}{90}\)
1.9626105127°\(\frac{3\pi}{20}\)
1.8807264728°\(\frac{7\pi}{45}\)
1.8040477629°\(\frac{29\pi}{180}\)
1.7320508130°\(\frac{\pi}{6}\)
1.6642794831°\(\frac{31\pi}{180}\)
1.6003345332°\(\frac{8\pi}{45}\)
1.5398649633°\(\frac{11\pi}{60}\)
1.4825609734°\(\frac{17\pi}{90}\)
1.4281480135°\(\frac{7\pi}{36}\)
1.3763819236°\(\frac{\pi}{5}\)
1.3270448237°\(\frac{37\pi}{180}\)
1.2799416338°\(\frac{19\pi}{90}\)
1.2348971639°\(\frac{13\pi}{60}\)
1.1917535940°\(\frac{2\pi}{9}\)
1.1503684141°\(\frac{41\pi}{180}\)
1.1106125142°\(\frac{7\pi}{30}\)
1.0723687143°\(\frac{43\pi}{180}\)
1.0355303144°\(\frac{11\pi}{45}\)
145°\(\frac{\pi}{4}\)
0.9656887746°\(\frac{23\pi}{90}\)
0.9325150947°\(\frac{47\pi}{180}\)
0.9004040448°\(\frac{4\pi}{15}\)
0.8692867449°\(\frac{49\pi}{180}\)
0.8390996350°\(\frac{5\pi}{18}\)
0.8097840351°\(\frac{17\pi}{60}\)
0.7812856352°\(\frac{13\pi}{45}\)
0.7535540553°\(\frac{53\pi}{180}\)
0.7265425354°\(\frac{3\pi}{10}\)
0.7002075455°\(\frac{11\pi}{36}\)
0.6745085256°\(\frac{14\pi}{45}\)
0.6494075957°\(\frac{19\pi}{60}\)
0.6248693558°\(\frac{29\pi}{90}\)
0.6008606259°\(\frac{59\pi}{180}\)
0.5773502760°\(\frac{\pi}{3}\)
0.5543090561°\(\frac{61\pi}{180}\)
0.5317094362°\(\frac{31\pi}{90}\)
0.5095254563°\(\frac{7\pi}{20}\)
0.4877325964°\(\frac{16\pi}{45}\)
0.4663076665°\(\frac{13\pi}{36}\)
0.4452286966°\(\frac{11\pi}{30}\)
0.4244748267°\(\frac{67\pi}{180}\)
0.4040262368°\(\frac{17\pi}{45}\)
0.3838640469°\(\frac{23\pi}{60}\)
0.3639702370°\(\frac{7\pi}{18}\)
0.3443276171°\(\frac{71\pi}{180}\)
0.324919772°\(\frac{2\pi}{5}\)
0.3057306873°\(\frac{73\pi}{180}\)
0.2867453974°\(\frac{37\pi}{90}\)
0.2679491975°\(\frac{5\pi}{12}\)
0.24932876°\(\frac{19\pi}{45}\)
0.2308681977°\(\frac{77\pi}{180}\)
0.2125565678°\(\frac{13\pi}{30}\)
0.1943803179°\(\frac{79\pi}{180}\)
0.1763269880°\(\frac{4\pi}{9}\)
0.1583844481°\(\frac{9\pi}{20}\)
0.1405408382°\(\frac{41\pi}{90}\)
0.1227845683°\(\frac{83\pi}{180}\)
0.1051042484°\(\frac{7\pi}{15}\)
0.0874886685°\(\frac{17\pi}{36}\)
0.0699268186°\(\frac{43\pi}{90}\)
0.0524077887°\(\frac{29\pi}{60}\)
0.0349207788°\(\frac{22\pi}{45}\)
0.0174550689°\(\frac{89\pi}{180}\)
090°\(\frac{\pi}{2}\)
-0.0174550691°\(\frac{91\pi}{180}\)
-0.0349207792°\(\frac{23\pi}{45}\)
-0.0524077893°\(\frac{31\pi}{60}\)
-0.0699268194°\(\frac{47\pi}{90}\)
-0.0874886695°\(\frac{19\pi}{36}\)
-0.1051042496°\(\frac{8\pi}{15}\)
-0.1227845697°\(\frac{97\pi}{180}\)
-0.1405408398°\(\frac{49\pi}{90}\)
-0.1583844499°\(\frac{11\pi}{20}\)
-0.17632698100°\(\frac{5\pi}{9}\)
-0.19438031101°\(\frac{101\pi}{180}\)
-0.21255656102°\(\frac{17\pi}{30}\)
-0.23086819103°\(\frac{103\pi}{180}\)
-0.249328104°\(\frac{26\pi}{45}\)
-0.26794919105°\(\frac{7\pi}{12}\)
-0.28674539106°\(\frac{53\pi}{90}\)
-0.30573068107°\(\frac{107\pi}{180}\)
-0.3249197108°\(\frac{3\pi}{5}\)
-0.34432761109°\(\frac{109\pi}{180}\)
-0.36397023110°\(\frac{11\pi}{18}\)
-0.38386404111°\(\frac{37\pi}{60}\)
-0.40402623112°\(\frac{28\pi}{45}\)
-0.42447482113°\(\frac{113\pi}{180}\)
-0.44522869114°\(\frac{19\pi}{30}\)
-0.46630766115°\(\frac{23\pi}{36}\)
-0.48773259116°\(\frac{29\pi}{45}\)
-0.50952545117°\(\frac{13\pi}{20}\)
-0.53170943118°\(\frac{59\pi}{90}\)
-0.55430905119°\(\frac{119\pi}{180}\)
-0.57735027120°\(\frac{2\pi}{3}\)
-0.60086062121°\(\frac{121\pi}{180}\)
-0.62486935122°\(\frac{61\pi}{90}\)
-0.64940759123°\(\frac{41\pi}{60}\)
-0.67450852124°\(\frac{31\pi}{45}\)
-0.70020754125°\(\frac{25\pi}{36}\)
-0.72654253126°\(\frac{7\pi}{10}\)
-0.75355405127°\(\frac{127\pi}{180}\)
-0.78128563128°\(\frac{32\pi}{45}\)
-0.80978403129°\(\frac{43\pi}{60}\)
-0.83909963130°\(\frac{13\pi}{18}\)
-0.86928674131°\(\frac{131\pi}{180}\)
-0.90040404132°\(\frac{11\pi}{15}\)
-0.93251509133°\(\frac{133\pi}{180}\)
-0.96568877134°\(\frac{67\pi}{90}\)
-1135°\(\frac{3\pi}{4}\)
-1.03553031136°\(\frac{34\pi}{45}\)
-1.07236871137°\(\frac{137\pi}{180}\)
-1.11061251138°\(\frac{23\pi}{30}\)
-1.15036841139°\(\frac{139\pi}{180}\)
-1.19175359140°\(\frac{7\pi}{9}\)
-1.23489716141°\(\frac{47\pi}{60}\)
-1.27994163142°\(\frac{71\pi}{90}\)
-1.32704482143°\(\frac{143\pi}{180}\)
-1.37638192144°\(\frac{4\pi}{5}\)
-1.42814801145°\(\frac{29\pi}{36}\)
-1.48256097146°\(\frac{73\pi}{90}\)
-1.53986496147°\(\frac{49\pi}{60}\)
-1.60033453148°\(\frac{37\pi}{45}\)
-1.66427948149°\(\frac{149\pi}{180}\)
-1.73205081150°\(\frac{5\pi}{6}\)
-1.80404776151°\(\frac{151\pi}{180}\)
-1.88072647152°\(\frac{38\pi}{45}\)
-1.96261051153°\(\frac{17\pi}{20}\)
-2.05030384154°\(\frac{77\pi}{90}\)
-2.14450692155°\(\frac{31\pi}{36}\)
-2.24603677156°\(\frac{13\pi}{15}\)
-2.35585237157°\(\frac{157\pi}{180}\)
-2.47508685158°\(\frac{79\pi}{90}\)
-2.60508906159°\(\frac{53\pi}{60}\)
-2.74747742160°\(\frac{8\pi}{9}\)
-2.90421088161°\(\frac{161\pi}{180}\)
-3.07768354162°\(\frac{9\pi}{10}\)
-3.27085262163°\(\frac{163\pi}{180}\)
-3.48741444164°\(\frac{41\pi}{45}\)
-3.73205081165°\(\frac{11\pi}{12}\)
-4.01078093166°\(\frac{83\pi}{90}\)
-4.33147587167°\(\frac{167\pi}{180}\)
-4.70463011168°\(\frac{14\pi}{15}\)
-5.14455402169°\(\frac{169\pi}{180}\)
-5.67128182170°\(\frac{17\pi}{18}\)
-6.31375151171°\(\frac{19\pi}{20}\)
-7.11536972172°\(\frac{43\pi}{45}\)
-8.14434643173°\(\frac{173\pi}{180}\)
-9.51436445174°\(\frac{29\pi}{30}\)
-11.4300523175°\(\frac{35\pi}{36}\)
-14.30066626176°\(\frac{44\pi}{45}\)
-19.08113669177°\(\frac{59\pi}{60}\)
-28.63625328178°\(\frac{89\pi}{90}\)
-57.28996163179°\(\frac{179\pi}{180}\)