输入余切值,计算对应的角度和弧度。
反余切函数(Arccotangent function)是余切函数的反函数,通常用符号 \(\operatorname{arccot}(x)\) 或 \(\cot^{-1}(x)\) 表示,用于计算给定余切值对应的角度。对于余切函数 \(y = \cot(\theta)\),反余切函数定义为: \( \theta = \operatorname{arccot}(x) \) 其中,\(-\infty < x < \infty\) 且 \(0 < \theta < \pi\)。反余切的值域为 \((0, \pi)\),使得反余切函数唯一且可逆。
解答:
\( \theta = \operatorname{arccot}(1) = \frac{\pi}{4} \approx 0.7854 \, \text{弧度} \)
因此,余切值为 1 的角度是 \(\frac{\pi}{4}\) 或 45°。
解答:
\( \theta = \operatorname{arccot}(-1) = \frac{3\pi}{4} \approx 2.3562 \, \text{弧度} \)
所以,余切值为 -1 的角度是 \(\frac{3\pi}{4}\) 或 135°。
反余切函数的图形是一条单调递减的曲线,范围从 \(-\infty\) 到 \(+\infty\),其值域为 \((0, \pi)\)。图形的主要特性包括:
余切值 | 角度 | 弧度 |
---|---|---|
57.28996163 | 1° | \(\frac{\pi}{180}\) |
28.63625328 | 2° | \(\frac{\pi}{90}\) |
19.08113669 | 3° | \(\frac{\pi}{60}\) |
14.30066626 | 4° | \(\frac{\pi}{45}\) |
11.4300523 | 5° | \(\frac{\pi}{36}\) |
9.51436445 | 6° | \(\frac{\pi}{30}\) |
8.14434643 | 7° | \(\frac{7\pi}{180}\) |
7.11536972 | 8° | \(\frac{2\pi}{45}\) |
6.31375151 | 9° | \(\frac{\pi}{20}\) |
5.67128182 | 10° | \(\frac{\pi}{18}\) |
5.14455402 | 11° | \(\frac{11\pi}{180}\) |
4.70463011 | 12° | \(\frac{\pi}{15}\) |
4.33147587 | 13° | \(\frac{13\pi}{180}\) |
4.01078093 | 14° | \(\frac{7\pi}{90}\) |
3.73205081 | 15° | \(\frac{\pi}{12}\) |
3.48741444 | 16° | \(\frac{4\pi}{45}\) |
3.27085262 | 17° | \(\frac{17\pi}{180}\) |
3.07768354 | 18° | \(\frac{\pi}{10}\) |
2.90421088 | 19° | \(\frac{19\pi}{180}\) |
2.74747742 | 20° | \(\frac{\pi}{9}\) |
2.60508906 | 21° | \(\frac{7\pi}{60}\) |
2.47508685 | 22° | \(\frac{11\pi}{90}\) |
2.35585237 | 23° | \(\frac{23\pi}{180}\) |
2.24603677 | 24° | \(\frac{2\pi}{15}\) |
2.14450692 | 25° | \(\frac{5\pi}{36}\) |
2.05030384 | 26° | \(\frac{13\pi}{90}\) |
1.96261051 | 27° | \(\frac{3\pi}{20}\) |
1.88072647 | 28° | \(\frac{7\pi}{45}\) |
1.80404776 | 29° | \(\frac{29\pi}{180}\) |
1.73205081 | 30° | \(\frac{\pi}{6}\) |
1.66427948 | 31° | \(\frac{31\pi}{180}\) |
1.60033453 | 32° | \(\frac{8\pi}{45}\) |
1.53986496 | 33° | \(\frac{11\pi}{60}\) |
1.48256097 | 34° | \(\frac{17\pi}{90}\) |
1.42814801 | 35° | \(\frac{7\pi}{36}\) |
1.37638192 | 36° | \(\frac{\pi}{5}\) |
1.32704482 | 37° | \(\frac{37\pi}{180}\) |
1.27994163 | 38° | \(\frac{19\pi}{90}\) |
1.23489716 | 39° | \(\frac{13\pi}{60}\) |
1.19175359 | 40° | \(\frac{2\pi}{9}\) |
1.15036841 | 41° | \(\frac{41\pi}{180}\) |
1.11061251 | 42° | \(\frac{7\pi}{30}\) |
1.07236871 | 43° | \(\frac{43\pi}{180}\) |
1.03553031 | 44° | \(\frac{11\pi}{45}\) |
1 | 45° | \(\frac{\pi}{4}\) |
0.96568877 | 46° | \(\frac{23\pi}{90}\) |
0.93251509 | 47° | \(\frac{47\pi}{180}\) |
0.90040404 | 48° | \(\frac{4\pi}{15}\) |
0.86928674 | 49° | \(\frac{49\pi}{180}\) |
0.83909963 | 50° | \(\frac{5\pi}{18}\) |
0.80978403 | 51° | \(\frac{17\pi}{60}\) |
0.78128563 | 52° | \(\frac{13\pi}{45}\) |
0.75355405 | 53° | \(\frac{53\pi}{180}\) |
0.72654253 | 54° | \(\frac{3\pi}{10}\) |
0.70020754 | 55° | \(\frac{11\pi}{36}\) |
0.67450852 | 56° | \(\frac{14\pi}{45}\) |
0.64940759 | 57° | \(\frac{19\pi}{60}\) |
0.62486935 | 58° | \(\frac{29\pi}{90}\) |
0.60086062 | 59° | \(\frac{59\pi}{180}\) |
0.57735027 | 60° | \(\frac{\pi}{3}\) |
0.55430905 | 61° | \(\frac{61\pi}{180}\) |
0.53170943 | 62° | \(\frac{31\pi}{90}\) |
0.50952545 | 63° | \(\frac{7\pi}{20}\) |
0.48773259 | 64° | \(\frac{16\pi}{45}\) |
0.46630766 | 65° | \(\frac{13\pi}{36}\) |
0.44522869 | 66° | \(\frac{11\pi}{30}\) |
0.42447482 | 67° | \(\frac{67\pi}{180}\) |
0.40402623 | 68° | \(\frac{17\pi}{45}\) |
0.38386404 | 69° | \(\frac{23\pi}{60}\) |
0.36397023 | 70° | \(\frac{7\pi}{18}\) |
0.34432761 | 71° | \(\frac{71\pi}{180}\) |
0.3249197 | 72° | \(\frac{2\pi}{5}\) |
0.30573068 | 73° | \(\frac{73\pi}{180}\) |
0.28674539 | 74° | \(\frac{37\pi}{90}\) |
0.26794919 | 75° | \(\frac{5\pi}{12}\) |
0.249328 | 76° | \(\frac{19\pi}{45}\) |
0.23086819 | 77° | \(\frac{77\pi}{180}\) |
0.21255656 | 78° | \(\frac{13\pi}{30}\) |
0.19438031 | 79° | \(\frac{79\pi}{180}\) |
0.17632698 | 80° | \(\frac{4\pi}{9}\) |
0.15838444 | 81° | \(\frac{9\pi}{20}\) |
0.14054083 | 82° | \(\frac{41\pi}{90}\) |
0.12278456 | 83° | \(\frac{83\pi}{180}\) |
0.10510424 | 84° | \(\frac{7\pi}{15}\) |
0.08748866 | 85° | \(\frac{17\pi}{36}\) |
0.06992681 | 86° | \(\frac{43\pi}{90}\) |
0.05240778 | 87° | \(\frac{29\pi}{60}\) |
0.03492077 | 88° | \(\frac{22\pi}{45}\) |
0.01745506 | 89° | \(\frac{89\pi}{180}\) |
0 | 90° | \(\frac{\pi}{2}\) |
-0.01745506 | 91° | \(\frac{91\pi}{180}\) |
-0.03492077 | 92° | \(\frac{23\pi}{45}\) |
-0.05240778 | 93° | \(\frac{31\pi}{60}\) |
-0.06992681 | 94° | \(\frac{47\pi}{90}\) |
-0.08748866 | 95° | \(\frac{19\pi}{36}\) |
-0.10510424 | 96° | \(\frac{8\pi}{15}\) |
-0.12278456 | 97° | \(\frac{97\pi}{180}\) |
-0.14054083 | 98° | \(\frac{49\pi}{90}\) |
-0.15838444 | 99° | \(\frac{11\pi}{20}\) |
-0.17632698 | 100° | \(\frac{5\pi}{9}\) |
-0.19438031 | 101° | \(\frac{101\pi}{180}\) |
-0.21255656 | 102° | \(\frac{17\pi}{30}\) |
-0.23086819 | 103° | \(\frac{103\pi}{180}\) |
-0.249328 | 104° | \(\frac{26\pi}{45}\) |
-0.26794919 | 105° | \(\frac{7\pi}{12}\) |
-0.28674539 | 106° | \(\frac{53\pi}{90}\) |
-0.30573068 | 107° | \(\frac{107\pi}{180}\) |
-0.3249197 | 108° | \(\frac{3\pi}{5}\) |
-0.34432761 | 109° | \(\frac{109\pi}{180}\) |
-0.36397023 | 110° | \(\frac{11\pi}{18}\) |
-0.38386404 | 111° | \(\frac{37\pi}{60}\) |
-0.40402623 | 112° | \(\frac{28\pi}{45}\) |
-0.42447482 | 113° | \(\frac{113\pi}{180}\) |
-0.44522869 | 114° | \(\frac{19\pi}{30}\) |
-0.46630766 | 115° | \(\frac{23\pi}{36}\) |
-0.48773259 | 116° | \(\frac{29\pi}{45}\) |
-0.50952545 | 117° | \(\frac{13\pi}{20}\) |
-0.53170943 | 118° | \(\frac{59\pi}{90}\) |
-0.55430905 | 119° | \(\frac{119\pi}{180}\) |
-0.57735027 | 120° | \(\frac{2\pi}{3}\) |
-0.60086062 | 121° | \(\frac{121\pi}{180}\) |
-0.62486935 | 122° | \(\frac{61\pi}{90}\) |
-0.64940759 | 123° | \(\frac{41\pi}{60}\) |
-0.67450852 | 124° | \(\frac{31\pi}{45}\) |
-0.70020754 | 125° | \(\frac{25\pi}{36}\) |
-0.72654253 | 126° | \(\frac{7\pi}{10}\) |
-0.75355405 | 127° | \(\frac{127\pi}{180}\) |
-0.78128563 | 128° | \(\frac{32\pi}{45}\) |
-0.80978403 | 129° | \(\frac{43\pi}{60}\) |
-0.83909963 | 130° | \(\frac{13\pi}{18}\) |
-0.86928674 | 131° | \(\frac{131\pi}{180}\) |
-0.90040404 | 132° | \(\frac{11\pi}{15}\) |
-0.93251509 | 133° | \(\frac{133\pi}{180}\) |
-0.96568877 | 134° | \(\frac{67\pi}{90}\) |
-1 | 135° | \(\frac{3\pi}{4}\) |
-1.03553031 | 136° | \(\frac{34\pi}{45}\) |
-1.07236871 | 137° | \(\frac{137\pi}{180}\) |
-1.11061251 | 138° | \(\frac{23\pi}{30}\) |
-1.15036841 | 139° | \(\frac{139\pi}{180}\) |
-1.19175359 | 140° | \(\frac{7\pi}{9}\) |
-1.23489716 | 141° | \(\frac{47\pi}{60}\) |
-1.27994163 | 142° | \(\frac{71\pi}{90}\) |
-1.32704482 | 143° | \(\frac{143\pi}{180}\) |
-1.37638192 | 144° | \(\frac{4\pi}{5}\) |
-1.42814801 | 145° | \(\frac{29\pi}{36}\) |
-1.48256097 | 146° | \(\frac{73\pi}{90}\) |
-1.53986496 | 147° | \(\frac{49\pi}{60}\) |
-1.60033453 | 148° | \(\frac{37\pi}{45}\) |
-1.66427948 | 149° | \(\frac{149\pi}{180}\) |
-1.73205081 | 150° | \(\frac{5\pi}{6}\) |
-1.80404776 | 151° | \(\frac{151\pi}{180}\) |
-1.88072647 | 152° | \(\frac{38\pi}{45}\) |
-1.96261051 | 153° | \(\frac{17\pi}{20}\) |
-2.05030384 | 154° | \(\frac{77\pi}{90}\) |
-2.14450692 | 155° | \(\frac{31\pi}{36}\) |
-2.24603677 | 156° | \(\frac{13\pi}{15}\) |
-2.35585237 | 157° | \(\frac{157\pi}{180}\) |
-2.47508685 | 158° | \(\frac{79\pi}{90}\) |
-2.60508906 | 159° | \(\frac{53\pi}{60}\) |
-2.74747742 | 160° | \(\frac{8\pi}{9}\) |
-2.90421088 | 161° | \(\frac{161\pi}{180}\) |
-3.07768354 | 162° | \(\frac{9\pi}{10}\) |
-3.27085262 | 163° | \(\frac{163\pi}{180}\) |
-3.48741444 | 164° | \(\frac{41\pi}{45}\) |
-3.73205081 | 165° | \(\frac{11\pi}{12}\) |
-4.01078093 | 166° | \(\frac{83\pi}{90}\) |
-4.33147587 | 167° | \(\frac{167\pi}{180}\) |
-4.70463011 | 168° | \(\frac{14\pi}{15}\) |
-5.14455402 | 169° | \(\frac{169\pi}{180}\) |
-5.67128182 | 170° | \(\frac{17\pi}{18}\) |
-6.31375151 | 171° | \(\frac{19\pi}{20}\) |
-7.11536972 | 172° | \(\frac{43\pi}{45}\) |
-8.14434643 | 173° | \(\frac{173\pi}{180}\) |
-9.51436445 | 174° | \(\frac{29\pi}{30}\) |
-11.4300523 | 175° | \(\frac{35\pi}{36}\) |
-14.30066626 | 176° | \(\frac{44\pi}{45}\) |
-19.08113669 | 177° | \(\frac{59\pi}{60}\) |
-28.63625328 | 178° | \(\frac{89\pi}{90}\) |
-57.28996163 | 179° | \(\frac{179\pi}{180}\) |