反余割计算器

输入余割值,计算对应的角度和弧度。

反余割计算

角度

弧度

什么是反余割函数

反余割函数(Arccosecant function)是余割函数的反函数,通常用符号 \(\operatorname{arccsc}(x)\) 或 \(\csc^{-1}(x)\) 表示,用于计算给定余割值对应的角度。对于余割函数 \(y = \csc(\theta)\),反余割函数定义为: \( \theta = \operatorname{arccsc}(x) \) 其中,\(x \leq -1\) 或 \(x \geq 1\),而角度 \(\theta\) 的值域为 \([- \frac{\pi}{2}, \frac{\pi}{2}]\) 且 \(\theta \neq 0\)。这样定义使得反余割函数唯一且可逆。

示例

例子 1:假设已知 \(\csc(\theta) = 2\),求对应的角度 \(\theta\):

解答:

\( \theta = \operatorname{arccsc}(2) \approx 0.523 \, \text{弧度} \)

因此,余割值为 2 的角度约为 0.523 弧度或 30°。

例子 2:已知 \(\csc(\theta) = -2\),求对应的角度 \(\theta\):

解答:

\( \theta = \operatorname{arccsc}(-2) \approx -0.523 \, \text{弧度} \)

所以,余割值为 -2 的角度约为 -0.523 弧度或 -30°。

反余割函数图形

arccosecant graph

反余割函数的图形包括在定义域内的两段曲线,范围从 \((-\infty, -1] \cup [1, +\infty)\),其值域为 \([- \frac{\pi}{2}, \frac{\pi}{2}]\)(不包含 0)。图形的主要特性包括:

  • 单调性:反余割函数在其定义域内为单调递减。
  • 奇函数特性:反余割满足 \(\operatorname{arccsc}(-x) = -\operatorname{arccsc}(x)\),即关于原点对称。

反余割函数转换表格

余割值 角度 弧度
-1-90°\(\frac{-\pi}{2}\)
-1.00015233-89°\(\frac{-89\pi}{180}\)
-1.00060954-88°\(\frac{-22\pi}{45}\)
-1.00137235-87°\(\frac{-29\pi}{60}\)
-1.0024419-86°\(\frac{-43\pi}{90}\)
-1.00381984-85°\(\frac{-17\pi}{36}\)
-1.00550828-84°\(\frac{-7\pi}{15}\)
-1.00750983-83°\(\frac{-83\pi}{180}\)
-1.00982757-82°\(\frac{-41\pi}{90}\)
-1.01246513-81°\(\frac{-9\pi}{20}\)
-1.01542661-80°\(\frac{-4\pi}{9}\)
-1.01871669-79°\(\frac{-79\pi}{180}\)
-1.02234059-78°\(\frac{-13\pi}{30}\)
-1.02630411-77°\(\frac{-77\pi}{180}\)
-1.03061363-76°\(\frac{-19\pi}{45}\)
-1.03527618-75°\(\frac{-5\pi}{12}\)
-1.04029944-74°\(\frac{-37\pi}{90}\)
-1.04569176-73°\(\frac{-73\pi}{180}\)
-1.05146222-72°\(\frac{-2\pi}{5}\)
-1.05762068-71°\(\frac{-71\pi}{180}\)
-1.06417777-70°\(\frac{-7\pi}{18}\)
-1.07114499-69°\(\frac{-23\pi}{60}\)
-1.07853474-68°\(\frac{-17\pi}{45}\)
-1.08636038-67°\(\frac{-67\pi}{180}\)
-1.09463628-66°\(\frac{-11\pi}{30}\)
-1.10337792-65°\(\frac{-13\pi}{36}\)
-1.11260194-64°\(\frac{-16\pi}{45}\)
-1.12232624-63°\(\frac{-7\pi}{20}\)
-1.13257005-62°\(\frac{-31\pi}{90}\)
-1.14335407-61°\(\frac{-61\pi}{180}\)
-1.15470054-60°\(\frac{-\pi}{3}\)
-1.1666334-59°\(\frac{-59\pi}{180}\)
-1.1791784-58°\(\frac{-29\pi}{90}\)
-1.19236329-57°\(\frac{-19\pi}{60}\)
-1.20621795-56°\(\frac{-14\pi}{45}\)
-1.22077459-55°\(\frac{-11\pi}{36}\)
-1.23606798-54°\(\frac{-3\pi}{10}\)
-1.25213566-53°\(\frac{-53\pi}{180}\)
-1.26901822-52°\(\frac{-13\pi}{45}\)
-1.28675957-51°\(\frac{-17\pi}{60}\)
-1.30540729-50°\(\frac{-5\pi}{18}\)
-1.32501299-49°\(\frac{-49\pi}{180}\)
-1.34563273-48°\(\frac{-4\pi}{15}\)
-1.36732746-47°\(\frac{-47\pi}{180}\)
-1.39016359-46°\(\frac{-23\pi}{90}\)
-1.41421356-45°\(\frac{-\pi}{4}\)
-1.43955654-44°\(\frac{-11\pi}{45}\)
-1.46627919-43°\(\frac{-43\pi}{180}\)
-1.49447655-42°\(\frac{-7\pi}{30}\)
-1.52425309-41°\(\frac{-41\pi}{180}\)
-1.55572383-40°\(\frac{-2\pi}{9}\)
-1.58901573-39°\(\frac{-13\pi}{60}\)
-1.62426925-38°\(\frac{-19\pi}{90}\)
-1.66164014-37°\(\frac{-37\pi}{180}\)
-1.70130162-36°\(\frac{-\pi}{5}\)
-1.7434468-35°\(\frac{-7\pi}{36}\)
-1.78829165-34°\(\frac{-17\pi}{90}\)
-1.83607846-33°\(\frac{-11\pi}{60}\)
-1.88707991-32°\(\frac{-8\pi}{45}\)
-1.94160403-31°\(\frac{-31\pi}{180}\)
-2-30°\(\frac{-\pi}{6}\)
-2.06266534-29°\(\frac{-29\pi}{180}\)
-2.13005447-28°\(\frac{-7\pi}{45}\)
-2.20268926-27°\(\frac{-3\pi}{20}\)
-2.28117203-26°\(\frac{-13\pi}{90}\)
-2.36620158-25°\(\frac{-5\pi}{36}\)
-2.45859334-24°\(\frac{-2\pi}{15}\)
-2.55930467-23°\(\frac{-23\pi}{180}\)
-2.66946716-22°\(\frac{-11\pi}{90}\)
-2.79042811-21°\(\frac{-7\pi}{60}\)
-2.9238044-20°\(\frac{-\pi}{9}\)
-3.07155349-19°\(\frac{-19\pi}{180}\)
-3.23606798-18°\(\frac{-\pi}{10}\)
-3.42030362-17°\(\frac{-17\pi}{180}\)
-3.62795528-16°\(\frac{-4\pi}{45}\)
-3.86370331-15°\(\frac{-\pi}{12}\)
-4.13356549-14°\(\frac{-7\pi}{90}\)
-4.44541148-13°\(\frac{-13\pi}{180}\)
-4.80973434-12°\(\frac{-\pi}{15}\)
-5.24084306-11°\(\frac{-11\pi}{180}\)
-5.75877048-10°\(\frac{-\pi}{18}\)
-6.39245322-9°\(\frac{-\pi}{20}\)
-7.18529653-8°\(\frac{-2\pi}{45}\)
-8.20550905-7°\(\frac{-7\pi}{180}\)
-9.56677223-6°\(\frac{-\pi}{30}\)
-11.47371325-5°\(\frac{-\pi}{36}\)
-14.33558703-4°\(\frac{-\pi}{45}\)
-19.10732261-3°\(\frac{-\pi}{60}\)
-28.65370835-2°\(\frac{-\pi}{90}\)
-57.2986885-1°\(\frac{-\pi}{180}\)
57.2986885\(\frac{\pi}{180}\)
28.65370835\(\frac{\pi}{90}\)
19.10732261\(\frac{\pi}{60}\)
14.33558703\(\frac{\pi}{45}\)
11.47371325\(\frac{\pi}{36}\)
9.56677223\(\frac{\pi}{30}\)
8.20550905\(\frac{7\pi}{180}\)
7.18529653\(\frac{2\pi}{45}\)
6.39245322\(\frac{\pi}{20}\)
5.7587704810°\(\frac{\pi}{18}\)
5.2408430611°\(\frac{11\pi}{180}\)
4.8097343412°\(\frac{\pi}{15}\)
4.4454114813°\(\frac{13\pi}{180}\)
4.1335654914°\(\frac{7\pi}{90}\)
3.8637033115°\(\frac{\pi}{12}\)
3.6279552816°\(\frac{4\pi}{45}\)
3.4203036217°\(\frac{17\pi}{180}\)
3.2360679818°\(\frac{\pi}{10}\)
3.0715534919°\(\frac{19\pi}{180}\)
2.923804420°\(\frac{\pi}{9}\)
2.7904281121°\(\frac{7\pi}{60}\)
2.6694671622°\(\frac{11\pi}{90}\)
2.5593046723°\(\frac{23\pi}{180}\)
2.4585933424°\(\frac{2\pi}{15}\)
2.3662015825°\(\frac{5\pi}{36}\)
2.2811720326°\(\frac{13\pi}{90}\)
2.2026892627°\(\frac{3\pi}{20}\)
2.1300544728°\(\frac{7\pi}{45}\)
2.0626653429°\(\frac{29\pi}{180}\)
230°\(\frac{\pi}{6}\)
1.9416040331°\(\frac{31\pi}{180}\)
1.8870799132°\(\frac{8\pi}{45}\)
1.8360784633°\(\frac{11\pi}{60}\)
1.7882916534°\(\frac{17\pi}{90}\)
1.743446835°\(\frac{7\pi}{36}\)
1.7013016236°\(\frac{\pi}{5}\)
1.6616401437°\(\frac{37\pi}{180}\)
1.6242692538°\(\frac{19\pi}{90}\)
1.5890157339°\(\frac{13\pi}{60}\)
1.5557238340°\(\frac{2\pi}{9}\)
1.5242530941°\(\frac{41\pi}{180}\)
1.4944765542°\(\frac{7\pi}{30}\)
1.4662791943°\(\frac{43\pi}{180}\)
1.4395565444°\(\frac{11\pi}{45}\)
1.4142135645°\(\frac{\pi}{4}\)
1.3901635946°\(\frac{23\pi}{90}\)
1.3673274647°\(\frac{47\pi}{180}\)
1.3456327348°\(\frac{4\pi}{15}\)
1.3250129949°\(\frac{49\pi}{180}\)
1.3054072950°\(\frac{5\pi}{18}\)
1.2867595751°\(\frac{17\pi}{60}\)
1.2690182252°\(\frac{13\pi}{45}\)
1.2521356653°\(\frac{53\pi}{180}\)
1.2360679854°\(\frac{3\pi}{10}\)
1.2207745955°\(\frac{11\pi}{36}\)
1.2062179556°\(\frac{14\pi}{45}\)
1.1923632957°\(\frac{19\pi}{60}\)
1.179178458°\(\frac{29\pi}{90}\)
1.166633459°\(\frac{59\pi}{180}\)
1.1547005460°\(\frac{\pi}{3}\)
1.1433540761°\(\frac{61\pi}{180}\)
1.1325700562°\(\frac{31\pi}{90}\)
1.1223262463°\(\frac{7\pi}{20}\)
1.1126019464°\(\frac{16\pi}{45}\)
1.1033779265°\(\frac{13\pi}{36}\)
1.0946362866°\(\frac{11\pi}{30}\)
1.0863603867°\(\frac{67\pi}{180}\)
1.0785347468°\(\frac{17\pi}{45}\)
1.0711449969°\(\frac{23\pi}{60}\)
1.0641777770°\(\frac{7\pi}{18}\)
1.0576206871°\(\frac{71\pi}{180}\)
1.0514622272°\(\frac{2\pi}{5}\)
1.0456917673°\(\frac{73\pi}{180}\)
1.0402994474°\(\frac{37\pi}{90}\)
1.0352761875°\(\frac{5\pi}{12}\)
1.0306136376°\(\frac{19\pi}{45}\)
1.0263041177°\(\frac{77\pi}{180}\)
1.0223405978°\(\frac{13\pi}{30}\)
1.0187166979°\(\frac{79\pi}{180}\)
1.0154266180°\(\frac{4\pi}{9}\)
1.0124651381°\(\frac{9\pi}{20}\)
1.0098275782°\(\frac{41\pi}{90}\)
1.0075098383°\(\frac{83\pi}{180}\)
1.0055082884°\(\frac{7\pi}{15}\)
1.0038198485°\(\frac{17\pi}{36}\)
1.002441986°\(\frac{43\pi}{90}\)
1.0013723587°\(\frac{29\pi}{60}\)
1.0006095488°\(\frac{22\pi}{45}\)
1.0001523389°\(\frac{89\pi}{180}\)
190°\(\frac{\pi}{2}\)