反正割计算器

输入正割值,计算对应的角度和弧度。

反正割计算

角度

弧度

什么是反正割函数

反正割函数(Arcsecant function)是正割函数的反函数,通常用符号 \(\operatorname{arcsec}(x)\) 或 \(\sec^{-1}(x)\) 表示,用于计算给定正割值对应的角度。对于正割函数 \(y = \sec(\theta)\),反正割函数定义为: \( \theta = \operatorname{arcsec}(x) \) 其中,\(x \leq -1\) 或 \(x \geq 1\),而角度 \(\theta\) 的值域为 \([0, \pi]\) 且 \(\theta \neq \frac{\pi}{2}\)。这样定义确保反正割函数的唯一性和可逆性。

示例

例子 1:假设已知 \(\sec(\theta) = 2\),求对应的角度 \(\theta\):

解答:

\( \theta = \operatorname{arcsec}(2) \approx 1.047 \, \text{弧度} \)

因此,正割值为 2 的角度约为 1.047 弧度或 60°。

例子 2:已知 \(\sec(\theta) = -2\),求对应的角度 \(\theta\):

解答:

\( \theta = \operatorname{arcsec}(-2) \approx 2.094 \, \text{弧度} \)

所以,正割值为 -2 的角度约为 2.094 弧度或 120°。

反正割函数的图形

arcsecant graph

反正割函数的图形是两个单调递增的曲线段,范围从 \((-\infty, -1] \cup [1, +\infty)\),其值域为 \((0, \pi]\),不包含 \(\frac{\pi}{2}\)。图形的主要特性包括:

  • 单调性:反正割在定义域内分为两部分,均为单调递增。
  • 奇函数:反正割满足 \(\operatorname{arcsec}(-x) = \pi - \operatorname{arcsec}(x)\)。

反正割函数转换表格

正割值 角度 弧度
10
1.00015233\(\frac{\pi}{180}\)
1.00060954\(\frac{\pi}{90}\)
1.00137235\(\frac{\pi}{60}\)
1.0024419\(\frac{\pi}{45}\)
1.00381984\(\frac{\pi}{36}\)
1.00550828\(\frac{\pi}{30}\)
1.00750983\(\frac{7\pi}{180}\)
1.00982757\(\frac{2\pi}{45}\)
1.01246513\(\frac{\pi}{20}\)
1.0154266110°\(\frac{\pi}{18}\)
1.0187166911°\(\frac{11\pi}{180}\)
1.0223405912°\(\frac{\pi}{15}\)
1.0263041113°\(\frac{13\pi}{180}\)
1.0306136314°\(\frac{7\pi}{90}\)
1.0352761815°\(\frac{\pi}{12}\)
1.0402994416°\(\frac{4\pi}{45}\)
1.0456917617°\(\frac{17\pi}{180}\)
1.0514622218°\(\frac{\pi}{10}\)
1.0576206819°\(\frac{19\pi}{180}\)
1.0641777720°\(\frac{\pi}{9}\)
1.0711449921°\(\frac{7\pi}{60}\)
1.0785347422°\(\frac{11\pi}{90}\)
1.0863603823°\(\frac{23\pi}{180}\)
1.0946362824°\(\frac{2\pi}{15}\)
1.1033779225°\(\frac{5\pi}{36}\)
1.1126019426°\(\frac{13\pi}{90}\)
1.1223262427°\(\frac{3\pi}{20}\)
1.1325700528°\(\frac{7\pi}{45}\)
1.1433540729°\(\frac{29\pi}{180}\)
1.1547005430°\(\frac{\pi}{6}\)
1.166633431°\(\frac{31\pi}{180}\)
1.179178432°\(\frac{8\pi}{45}\)
1.1923632933°\(\frac{11\pi}{60}\)
1.2062179534°\(\frac{17\pi}{90}\)
1.2207745935°\(\frac{7\pi}{36}\)
1.2360679836°\(\frac{\pi}{5}\)
1.2521356637°\(\frac{37\pi}{180}\)
1.2690182238°\(\frac{19\pi}{90}\)
1.2867595739°\(\frac{13\pi}{60}\)
1.3054072940°\(\frac{2\pi}{9}\)
1.3250129941°\(\frac{41\pi}{180}\)
1.3456327342°\(\frac{7\pi}{30}\)
1.3673274643°\(\frac{43\pi}{180}\)
1.3901635944°\(\frac{11\pi}{45}\)
1.4142135645°\(\frac{\pi}{4}\)
1.4395565446°\(\frac{23\pi}{90}\)
1.4662791947°\(\frac{47\pi}{180}\)
1.4944765548°\(\frac{4\pi}{15}\)
1.5242530949°\(\frac{49\pi}{180}\)
1.5557238350°\(\frac{5\pi}{18}\)
1.5890157351°\(\frac{17\pi}{60}\)
1.6242692552°\(\frac{13\pi}{45}\)
1.6616401453°\(\frac{53\pi}{180}\)
1.7013016254°\(\frac{3\pi}{10}\)
1.743446855°\(\frac{11\pi}{36}\)
1.7882916556°\(\frac{14\pi}{45}\)
1.8360784657°\(\frac{19\pi}{60}\)
1.8870799158°\(\frac{29\pi}{90}\)
1.9416040359°\(\frac{59\pi}{180}\)
260°\(\frac{\pi}{3}\)
2.0626653461°\(\frac{61\pi}{180}\)
2.1300544762°\(\frac{31\pi}{90}\)
2.2026892663°\(\frac{7\pi}{20}\)
2.2811720364°\(\frac{16\pi}{45}\)
2.3662015865°\(\frac{13\pi}{36}\)
2.4585933466°\(\frac{11\pi}{30}\)
2.5593046767°\(\frac{67\pi}{180}\)
2.6694671668°\(\frac{17\pi}{45}\)
2.7904281169°\(\frac{23\pi}{60}\)
2.923804470°\(\frac{7\pi}{18}\)
3.0715534971°\(\frac{71\pi}{180}\)
3.2360679872°\(\frac{2\pi}{5}\)
3.4203036273°\(\frac{73\pi}{180}\)
3.6279552874°\(\frac{37\pi}{90}\)
3.8637033175°\(\frac{5\pi}{12}\)
4.1335654976°\(\frac{19\pi}{45}\)
4.4454114877°\(\frac{77\pi}{180}\)
4.8097343478°\(\frac{13\pi}{30}\)
5.2408430679°\(\frac{79\pi}{180}\)
5.7587704880°\(\frac{4\pi}{9}\)
6.3924532281°\(\frac{9\pi}{20}\)
7.1852965382°\(\frac{41\pi}{90}\)
8.2055090583°\(\frac{83\pi}{180}\)
9.5667722384°\(\frac{7\pi}{15}\)
11.4737132585°\(\frac{17\pi}{36}\)
14.3355870386°\(\frac{43\pi}{90}\)
19.1073226187°\(\frac{29\pi}{60}\)
28.6537083588°\(\frac{22\pi}{45}\)
57.298688589°\(\frac{89\pi}{180}\)
-57.298688591°\(\frac{91\pi}{180}\)
-28.6537083592°\(\frac{23\pi}{45}\)
-19.1073226193°\(\frac{31\pi}{60}\)
-14.3355870394°\(\frac{47\pi}{90}\)
-11.4737132595°\(\frac{19\pi}{36}\)
-9.5667722396°\(\frac{8\pi}{15}\)
-8.2055090597°\(\frac{97\pi}{180}\)
-7.1852965398°\(\frac{49\pi}{90}\)
-6.3924532299°\(\frac{11\pi}{20}\)
-5.75877048100°\(\frac{5\pi}{9}\)
-5.24084306101°\(\frac{101\pi}{180}\)
-4.80973434102°\(\frac{17\pi}{30}\)
-4.44541148103°\(\frac{103\pi}{180}\)
-4.13356549104°\(\frac{26\pi}{45}\)
-3.86370331105°\(\frac{7\pi}{12}\)
-3.62795528106°\(\frac{53\pi}{90}\)
-3.42030362107°\(\frac{107\pi}{180}\)
-3.23606798108°\(\frac{3\pi}{5}\)
-3.07155349109°\(\frac{109\pi}{180}\)
-2.9238044110°\(\frac{11\pi}{18}\)
-2.79042811111°\(\frac{37\pi}{60}\)
-2.66946716112°\(\frac{28\pi}{45}\)
-2.55930467113°\(\frac{113\pi}{180}\)
-2.45859334114°\(\frac{19\pi}{30}\)
-2.36620158115°\(\frac{23\pi}{36}\)
-2.28117203116°\(\frac{29\pi}{45}\)
-2.20268926117°\(\frac{13\pi}{20}\)
-2.13005447118°\(\frac{59\pi}{90}\)
-2.06266534119°\(\frac{119\pi}{180}\)
-2120°\(\frac{2\pi}{3}\)
-1.94160403121°\(\frac{121\pi}{180}\)
-1.88707991122°\(\frac{61\pi}{90}\)
-1.83607846123°\(\frac{41\pi}{60}\)
-1.78829165124°\(\frac{31\pi}{45}\)
-1.7434468125°\(\frac{25\pi}{36}\)
-1.70130162126°\(\frac{7\pi}{10}\)
-1.66164014127°\(\frac{127\pi}{180}\)
-1.62426925128°\(\frac{32\pi}{45}\)
-1.58901573129°\(\frac{43\pi}{60}\)
-1.55572383130°\(\frac{13\pi}{18}\)
-1.52425309131°\(\frac{131\pi}{180}\)
-1.49447655132°\(\frac{11\pi}{15}\)
-1.46627919133°\(\frac{133\pi}{180}\)
-1.43955654134°\(\frac{67\pi}{90}\)
-1.41421356135°\(\frac{3\pi}{4}\)
-1.39016359136°\(\frac{34\pi}{45}\)
-1.36732746137°\(\frac{137\pi}{180}\)
-1.34563273138°\(\frac{23\pi}{30}\)
-1.32501299139°\(\frac{139\pi}{180}\)
-1.30540729140°\(\frac{7\pi}{9}\)
-1.28675957141°\(\frac{47\pi}{60}\)
-1.26901822142°\(\frac{71\pi}{90}\)
-1.25213566143°\(\frac{143\pi}{180}\)
-1.23606798144°\(\frac{4\pi}{5}\)
-1.22077459145°\(\frac{29\pi}{36}\)
-1.20621795146°\(\frac{73\pi}{90}\)
-1.19236329147°\(\frac{49\pi}{60}\)
-1.1791784148°\(\frac{37\pi}{45}\)
-1.1666334149°\(\frac{149\pi}{180}\)
-1.15470054150°\(\frac{5\pi}{6}\)
-1.14335407151°\(\frac{151\pi}{180}\)
-1.13257005152°\(\frac{38\pi}{45}\)
-1.12232624153°\(\frac{17\pi}{20}\)
-1.11260194154°\(\frac{77\pi}{90}\)
-1.10337792155°\(\frac{31\pi}{36}\)
-1.09463628156°\(\frac{13\pi}{15}\)
-1.08636038157°\(\frac{157\pi}{180}\)
-1.07853474158°\(\frac{79\pi}{90}\)
-1.07114499159°\(\frac{53\pi}{60}\)
-1.06417777160°\(\frac{8\pi}{9}\)
-1.05762068161°\(\frac{161\pi}{180}\)
-1.05146222162°\(\frac{9\pi}{10}\)
-1.04569176163°\(\frac{163\pi}{180}\)
-1.04029944164°\(\frac{41\pi}{45}\)
-1.03527618165°\(\frac{11\pi}{12}\)
-1.03061363166°\(\frac{83\pi}{90}\)
-1.02630411167°\(\frac{167\pi}{180}\)
-1.02234059168°\(\frac{14\pi}{15}\)
-1.01871669169°\(\frac{169\pi}{180}\)
-1.01542661170°\(\frac{17\pi}{18}\)
-1.01246513171°\(\frac{19\pi}{20}\)
-1.00982757172°\(\frac{43\pi}{45}\)
-1.00750983173°\(\frac{173\pi}{180}\)
-1.00550828174°\(\frac{29\pi}{30}\)
-1.00381984175°\(\frac{35\pi}{36}\)
-1.0024419176°\(\frac{44\pi}{45}\)
-1.00137235177°\(\frac{59\pi}{60}\)
-1.00060954178°\(\frac{89\pi}{90}\)
-1.00015233179°\(\frac{179\pi}{180}\)
-1180°π