反正切计算器

输入正切值,计算对应的角度和弧度。

反正切计算

角度

弧度

什么是反正切函数

反正切函数(Arctangent function)是正切函数的反函数,通常用符号 \(\arctan(x)\) 或 \(\tan^{-1}(x)\) 表示,用于计算给定正切值对应的角度。对于正切函数 \(y = \tan(\theta)\),反正切函数定义为: \( \theta = \arctan(x) \) 其中,\(-\infty < x < \infty\) 且 \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\)。反正切的值域为 \(\left(- \frac{\pi}{2}, \frac{\pi}{2}\right)\)。

示例

例子 1:假设已知 \(\tan(\theta) = 1\),求对应的角度 \(\theta\):

解答:

\( \theta = \arctan(1) = \frac{\pi}{4} \approx 0.7854 \, \text{弧度} \)

因此,正切值为 1 的角度是 \(\frac{\pi}{4}\) 或 45°。

例子 2:已知 \(\tan(\theta) = 0\),求对应的角度 \(\theta\):

解答:

\( \theta = \arctan(0) = 0 \)

所以,正切值为 0 的角度是 0 。

反正切函数图形

arctangent graph

反正切函数的图形是一条单调递增的曲线,范围从 \(-\infty\) 到 \(+\infty\),其值域为 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)。图形的主要特性包括:

  • 单调性:在定义域内,反正切函数是单调递增的。
  • 奇函数:反正切是奇函数,满足 \(\arctan(-x) = -\arctan(x)\),即关于原点对称。

反正切函数转换表格

正切值 角度 弧度
-57.28996163-89°\(\frac{-89\pi}{180}\)
-28.63625328-88°\(\frac{-22\pi}{45}\)
-19.08113669-87°\(\frac{-29\pi}{60}\)
-14.30066626-86°\(\frac{-43\pi}{90}\)
-11.4300523-85°\(\frac{-17\pi}{36}\)
-9.51436445-84°\(\frac{-7\pi}{15}\)
-8.14434643-83°\(\frac{-83\pi}{180}\)
-7.11536972-82°\(\frac{-41\pi}{90}\)
-6.31375151-81°\(\frac{-9\pi}{20}\)
-5.67128182-80°\(\frac{-4\pi}{9}\)
-5.14455402-79°\(\frac{-79\pi}{180}\)
-4.70463011-78°\(\frac{-13\pi}{30}\)
-4.33147587-77°\(\frac{-77\pi}{180}\)
-4.01078093-76°\(\frac{-19\pi}{45}\)
-3.73205081-75°\(\frac{-5\pi}{12}\)
-3.48741444-74°\(\frac{-37\pi}{90}\)
-3.27085262-73°\(\frac{-73\pi}{180}\)
-3.07768354-72°\(\frac{-2\pi}{5}\)
-2.90421088-71°\(\frac{-71\pi}{180}\)
-2.74747742-70°\(\frac{-7\pi}{18}\)
-2.60508906-69°\(\frac{-23\pi}{60}\)
-2.47508685-68°\(\frac{-17\pi}{45}\)
-2.35585237-67°\(\frac{-67\pi}{180}\)
-2.24603677-66°\(\frac{-11\pi}{30}\)
-2.14450692-65°\(\frac{-13\pi}{36}\)
-2.05030384-64°\(\frac{-16\pi}{45}\)
-1.96261051-63°\(\frac{-7\pi}{20}\)
-1.88072647-62°\(\frac{-31\pi}{90}\)
-1.80404776-61°\(\frac{-61\pi}{180}\)
-1.73205081-60°\(\frac{-\pi}{3}\)
-1.66427948-59°\(\frac{-59\pi}{180}\)
-1.60033453-58°\(\frac{-29\pi}{90}\)
-1.53986496-57°\(\frac{-19\pi}{60}\)
-1.48256097-56°\(\frac{-14\pi}{45}\)
-1.42814801-55°\(\frac{-11\pi}{36}\)
-1.37638192-54°\(\frac{-3\pi}{10}\)
-1.32704482-53°\(\frac{-53\pi}{180}\)
-1.27994163-52°\(\frac{-13\pi}{45}\)
-1.23489716-51°\(\frac{-17\pi}{60}\)
-1.19175359-50°\(\frac{-5\pi}{18}\)
-1.15036841-49°\(\frac{-49\pi}{180}\)
-1.11061251-48°\(\frac{-4\pi}{15}\)
-1.07236871-47°\(\frac{-47\pi}{180}\)
-1.03553031-46°\(\frac{-23\pi}{90}\)
-1-45°\(\frac{-\pi}{4}\)
-0.96568877-44°\(\frac{-11\pi}{45}\)
-0.93251509-43°\(\frac{-43\pi}{180}\)
-0.90040404-42°\(\frac{-7\pi}{30}\)
-0.86928674-41°\(\frac{-41\pi}{180}\)
-0.83909963-40°\(\frac{-2\pi}{9}\)
-0.80978403-39°\(\frac{-13\pi}{60}\)
-0.78128563-38°\(\frac{-19\pi}{90}\)
-0.75355405-37°\(\frac{-37\pi}{180}\)
-0.72654253-36°\(\frac{-\pi}{5}\)
-0.70020754-35°\(\frac{-7\pi}{36}\)
-0.67450852-34°\(\frac{-17\pi}{90}\)
-0.64940759-33°\(\frac{-11\pi}{60}\)
-0.62486935-32°\(\frac{-8\pi}{45}\)
-0.60086062-31°\(\frac{-31\pi}{180}\)
-0.57735027-30°\(\frac{-\pi}{6}\)
-0.55430905-29°\(\frac{-29\pi}{180}\)
-0.53170943-28°\(\frac{-7\pi}{45}\)
-0.50952545-27°\(\frac{-3\pi}{20}\)
-0.48773259-26°\(\frac{-13\pi}{90}\)
-0.46630766-25°\(\frac{-5\pi}{36}\)
-0.44522869-24°\(\frac{-2\pi}{15}\)
-0.42447482-23°\(\frac{-23\pi}{180}\)
-0.40402623-22°\(\frac{-11\pi}{90}\)
-0.38386404-21°\(\frac{-7\pi}{60}\)
-0.36397023-20°\(\frac{-\pi}{9}\)
-0.34432761-19°\(\frac{-19\pi}{180}\)
-0.3249197-18°\(\frac{-\pi}{10}\)
-0.30573068-17°\(\frac{-17\pi}{180}\)
-0.28674539-16°\(\frac{-4\pi}{45}\)
-0.26794919-15°\(\frac{-\pi}{12}\)
-0.249328-14°\(\frac{-7\pi}{90}\)
-0.23086819-13°\(\frac{-13\pi}{180}\)
-0.21255656-12°\(\frac{-\pi}{15}\)
-0.19438031-11°\(\frac{-11\pi}{180}\)
-0.17632698-10°\(\frac{-\pi}{18}\)
-0.15838444-9°\(\frac{-\pi}{20}\)
-0.14054083-8°\(\frac{-2\pi}{45}\)
-0.12278456-7°\(\frac{-7\pi}{180}\)
-0.10510424-6°\(\frac{-\pi}{30}\)
-0.08748866-5°\(\frac{-\pi}{36}\)
-0.06992681-4°\(\frac{-\pi}{45}\)
-0.05240778-3°\(\frac{-\pi}{60}\)
-0.03492077-2°\(\frac{-\pi}{90}\)
-0.01745506-1°\(\frac{-\pi}{180}\)
00
0.01745506\(\frac{\pi}{180}\)
0.03492077\(\frac{\pi}{90}\)
0.05240778\(\frac{\pi}{60}\)
0.06992681\(\frac{\pi}{45}\)
0.08748866\(\frac{\pi}{36}\)
0.10510424\(\frac{\pi}{30}\)
0.12278456\(\frac{7\pi}{180}\)
0.14054083\(\frac{2\pi}{45}\)
0.15838444\(\frac{\pi}{20}\)
0.1763269810°\(\frac{\pi}{18}\)
0.1943803111°\(\frac{11\pi}{180}\)
0.2125565612°\(\frac{\pi}{15}\)
0.2308681913°\(\frac{13\pi}{180}\)
0.24932814°\(\frac{7\pi}{90}\)
0.2679491915°\(\frac{\pi}{12}\)
0.2867453916°\(\frac{4\pi}{45}\)
0.3057306817°\(\frac{17\pi}{180}\)
0.324919718°\(\frac{\pi}{10}\)
0.3443276119°\(\frac{19\pi}{180}\)
0.3639702320°\(\frac{\pi}{9}\)
0.3838640421°\(\frac{7\pi}{60}\)
0.4040262322°\(\frac{11\pi}{90}\)
0.4244748223°\(\frac{23\pi}{180}\)
0.4452286924°\(\frac{2\pi}{15}\)
0.4663076625°\(\frac{5\pi}{36}\)
0.4877325926°\(\frac{13\pi}{90}\)
0.5095254527°\(\frac{3\pi}{20}\)
0.5317094328°\(\frac{7\pi}{45}\)
0.5543090529°\(\frac{29\pi}{180}\)
0.5773502730°\(\frac{\pi}{6}\)
0.6008606231°\(\frac{31\pi}{180}\)
0.6248693532°\(\frac{8\pi}{45}\)
0.6494075933°\(\frac{11\pi}{60}\)
0.6745085234°\(\frac{17\pi}{90}\)
0.7002075435°\(\frac{7\pi}{36}\)
0.7265425336°\(\frac{\pi}{5}\)
0.7535540537°\(\frac{37\pi}{180}\)
0.7812856338°\(\frac{19\pi}{90}\)
0.8097840339°\(\frac{13\pi}{60}\)
0.8390996340°\(\frac{2\pi}{9}\)
0.8692867441°\(\frac{41\pi}{180}\)
0.9004040442°\(\frac{7\pi}{30}\)
0.9325150943°\(\frac{43\pi}{180}\)
0.9656887744°\(\frac{11\pi}{45}\)
145°\(\frac{\pi}{4}\)
1.0355303146°\(\frac{23\pi}{90}\)
1.0723687147°\(\frac{47\pi}{180}\)
1.1106125148°\(\frac{4\pi}{15}\)
1.1503684149°\(\frac{49\pi}{180}\)
1.1917535950°\(\frac{5\pi}{18}\)
1.2348971651°\(\frac{17\pi}{60}\)
1.2799416352°\(\frac{13\pi}{45}\)
1.3270448253°\(\frac{53\pi}{180}\)
1.3763819254°\(\frac{3\pi}{10}\)
1.4281480155°\(\frac{11\pi}{36}\)
1.4825609756°\(\frac{14\pi}{45}\)
1.5398649657°\(\frac{19\pi}{60}\)
1.6003345358°\(\frac{29\pi}{90}\)
1.6642794859°\(\frac{59\pi}{180}\)
1.7320508160°\(\frac{\pi}{3}\)
1.8040477661°\(\frac{61\pi}{180}\)
1.8807264762°\(\frac{31\pi}{90}\)
1.9626105163°\(\frac{7\pi}{20}\)
2.0503038464°\(\frac{16\pi}{45}\)
2.1445069265°\(\frac{13\pi}{36}\)
2.2460367766°\(\frac{11\pi}{30}\)
2.3558523767°\(\frac{67\pi}{180}\)
2.4750868568°\(\frac{17\pi}{45}\)
2.6050890669°\(\frac{23\pi}{60}\)
2.7474774270°\(\frac{7\pi}{18}\)
2.9042108871°\(\frac{71\pi}{180}\)
3.0776835472°\(\frac{2\pi}{5}\)
3.2708526273°\(\frac{73\pi}{180}\)
3.4874144474°\(\frac{37\pi}{90}\)
3.7320508175°\(\frac{5\pi}{12}\)
4.0107809376°\(\frac{19\pi}{45}\)
4.3314758777°\(\frac{77\pi}{180}\)
4.7046301178°\(\frac{13\pi}{30}\)
5.1445540279°\(\frac{79\pi}{180}\)
5.6712818280°\(\frac{4\pi}{9}\)
6.3137515181°\(\frac{9\pi}{20}\)
7.1153697282°\(\frac{41\pi}{90}\)
8.1443464383°\(\frac{83\pi}{180}\)
9.5143644584°\(\frac{7\pi}{15}\)
11.430052385°\(\frac{17\pi}{36}\)
14.3006662686°\(\frac{43\pi}{90}\)
19.0811366987°\(\frac{29\pi}{60}\)
28.6362532888°\(\frac{22\pi}{45}\)
57.2899616389°\(\frac{89\pi}{180}\)