输入角度或弧度,计算对应的余矢值。
余矢函数(Coversine function),常用符号 \(\text{coversin}(\theta)\) 或 \(\text{versin}(\pi/2 - \theta)\) 表示,是一种较少使用的三角函数。在直角三角形中,余矢可以定义为: \( \text{coversin}(\theta) = 1 - \sin(\theta) \) 这一公式表明余矢是正弦函数的偏移版本,可以视为表示某一角度的正弦偏差。
例如,\(\theta = 30^\circ\): \( \text{coversin}(30^\circ) = 1 - \sin(30^\circ) = 1 - 0.5 = 0.5 \)
余矢函数的图形呈现为正弦波的偏移曲线,具有以下特性:
角度 | 弧度 | 余矢值 |
---|---|---|
0° | 0 | 1 |
5° | \(\frac{\pi}{36}\) | 0.91284426 |
10° | \(\frac{\pi}{18}\) | 0.82635182 |
15° | \(\frac{\pi}{12}\) | 0.74118095 |
20° | \(\frac{\pi}{9}\) | 0.65797986 |
25° | \(\frac{5\pi}{36}\) | 0.57738174 |
30° | \(\frac{\pi}{6}\) | 0.5 |
35° | \(\frac{7\pi}{36}\) | 0.42642356 |
40° | \(\frac{2\pi}{9}\) | 0.35721239 |
45° | \(\frac{\pi}{4}\) | 0.29289322 |
50° | \(\frac{5\pi}{18}\) | 0.23395556 |
55° | \(\frac{11\pi}{36}\) | 0.18084796 |
60° | \(\frac{\pi}{3}\) | 0.1339746 |
65° | \(\frac{13\pi}{36}\) | 0.09369221 |
70° | \(\frac{7\pi}{18}\) | 0.06030738 |
75° | \(\frac{5\pi}{12}\) | 0.03407417 |
80° | \(\frac{4\pi}{9}\) | 0.01519225 |
85° | \(\frac{17\pi}{36}\) | 0.0038053 |
90° | \(\frac{\pi}{2}\) | 0 |
95° | \(\frac{19\pi}{36}\) | 0.0038053 |
100° | \(\frac{5\pi}{9}\) | 0.01519225 |
105° | \(\frac{7\pi}{12}\) | 0.03407417 |
110° | \(\frac{11\pi}{18}\) | 0.06030738 |
115° | \(\frac{23\pi}{36}\) | 0.09369221 |
120° | \(\frac{2\pi}{3}\) | 0.1339746 |
125° | \(\frac{25\pi}{36}\) | 0.18084796 |
130° | \(\frac{13\pi}{18}\) | 0.23395556 |
135° | \(\frac{3\pi}{4}\) | 0.29289322 |
140° | \(\frac{7\pi}{9}\) | 0.35721239 |
145° | \(\frac{29\pi}{36}\) | 0.42642356 |
150° | \(\frac{5\pi}{6}\) | 0.5 |
155° | \(\frac{31\pi}{36}\) | 0.57738174 |
160° | \(\frac{8\pi}{9}\) | 0.65797986 |
165° | \(\frac{11\pi}{12}\) | 0.74118095 |
170° | \(\frac{17\pi}{18}\) | 0.82635182 |
175° | \(\frac{35\pi}{36}\) | 0.91284426 |
180° | π | 1 |
185° | \(\frac{37\pi}{36}\) | 1.08715574 |
190° | \(\frac{19\pi}{18}\) | 1.17364818 |
195° | \(\frac{13\pi}{12}\) | 1.25881905 |
200° | \(\frac{10\pi}{9}\) | 1.34202014 |
205° | \(\frac{41\pi}{36}\) | 1.42261826 |
210° | \(\frac{7\pi}{6}\) | 1.5 |
215° | \(\frac{43\pi}{36}\) | 1.57357644 |
220° | \(\frac{11\pi}{9}\) | 1.64278761 |
225° | \(\frac{5\pi}{4}\) | 1.70710678 |
230° | \(\frac{23\pi}{18}\) | 1.76604444 |
235° | \(\frac{47\pi}{36}\) | 1.81915204 |
240° | \(\frac{4\pi}{3}\) | 1.8660254 |
245° | \(\frac{49\pi}{36}\) | 1.90630779 |
250° | \(\frac{25\pi}{18}\) | 1.93969262 |
255° | \(\frac{17\pi}{12}\) | 1.96592583 |
260° | \(\frac{13\pi}{9}\) | 1.98480775 |
265° | \(\frac{53\pi}{36}\) | 1.9961947 |
270° | \(\frac{3\pi}{2}\) | 2 |
275° | \(\frac{55\pi}{36}\) | 1.9961947 |
280° | \(\frac{14\pi}{9}\) | 1.98480775 |
285° | \(\frac{19\pi}{12}\) | 1.96592583 |
290° | \(\frac{29\pi}{18}\) | 1.93969262 |
295° | \(\frac{59\pi}{36}\) | 1.90630779 |
300° | \(\frac{5\pi}{3}\) | 1.8660254 |
305° | \(\frac{61\pi}{36}\) | 1.81915204 |
310° | \(\frac{31\pi}{18}\) | 1.76604444 |
315° | \(\frac{7\pi}{4}\) | 1.70710678 |
320° | \(\frac{16\pi}{9}\) | 1.64278761 |
325° | \(\frac{65\pi}{36}\) | 1.57357644 |
330° | \(\frac{11\pi}{6}\) | 1.5 |
335° | \(\frac{67\pi}{36}\) | 1.42261826 |
340° | \(\frac{17\pi}{9}\) | 1.34202014 |
345° | \(\frac{23\pi}{12}\) | 1.25881905 |
350° | \(\frac{35\pi}{18}\) | 1.17364818 |
355° | \(\frac{71\pi}{36}\) | 1.08715574 |
360° | 2π | 1 |