反正弦计算器

输入正弦值,快速计算对应的角度和弧度。

反正弦计算

角度

弧度

什么是反正弦函数

反正弦函数(Arcsine function)是正弦函数的反函数,通常用符号 \(\arcsin(x)\) 或 \(\sin^{-1}(x)\) 表示,它用于计算给定正弦值对应的角度。对于正弦函数 \(y = \sin(\theta)\),反正弦函数定义为: \( \theta = \arcsin(x) \) 其中,\(-1 \leq x \leq 1\) 且 \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\)。反正弦函数的值域为 \([- \frac{\pi}{2}, \frac{\pi}{2}]\),这是为了确保反正弦是唯一且可逆的。

示例

例子 1:已知 \(\sin(\theta) = 0.5\),求对应的角度 \(\theta\):

解答:

\( \theta = \arcsin(0.5) = \frac{\pi}{6} \approx 0.5236 \, \text{弧度} \)

因此,正弦值为 0.5 的角度是 \(\frac{\pi}{6}\) 或 30°。

例子 2:已知 \(\sin(\theta) = 1\),计算对应的角度 \(\theta\):

解答:

\( \theta = \arcsin(1) = \frac{\pi}{2} \approx 1.5708 \, \text{弧度} \)

所以,正弦值为 1 的角度是 \(\frac{\pi}{2}\) 或 90°。

反正弦函数的图形

arcsine graph

反正弦函数的图形是单调递增曲线,其定义域为 \([-1, 1]\),值域为 \([- \frac{\pi}{2}, \frac{\pi}{2}]\)。图形的主要特性包括:

  • 单调性:在其定义域内,反正弦函数是单调递增的。
  • 奇函数:反正弦函数是奇函数,满足 \(\arcsin(-x) = -\arcsin(x)\),即关于原点对称。

反正弦函数转换表格

正弦值 角度 弧度
-1-90°\(\frac{-\pi}{2}\)
-0.9998477-89°\(\frac{-89\pi}{180}\)
-0.99939083-88°\(\frac{-22\pi}{45}\)
-0.99862953-87°\(\frac{-29\pi}{60}\)
-0.99756405-86°\(\frac{-43\pi}{90}\)
-0.9961947-85°\(\frac{-17\pi}{36}\)
-0.9945219-84°\(\frac{-7\pi}{15}\)
-0.99254615-83°\(\frac{-83\pi}{180}\)
-0.99026807-82°\(\frac{-41\pi}{90}\)
-0.98768834-81°\(\frac{-9\pi}{20}\)
-0.98480775-80°\(\frac{-4\pi}{9}\)
-0.98162718-79°\(\frac{-79\pi}{180}\)
-0.9781476-78°\(\frac{-13\pi}{30}\)
-0.97437006-77°\(\frac{-77\pi}{180}\)
-0.97029573-76°\(\frac{-19\pi}{45}\)
-0.96592583-75°\(\frac{-5\pi}{12}\)
-0.9612617-74°\(\frac{-37\pi}{90}\)
-0.95630476-73°\(\frac{-73\pi}{180}\)
-0.95105652-72°\(\frac{-2\pi}{5}\)
-0.94551858-71°\(\frac{-71\pi}{180}\)
-0.93969262-70°\(\frac{-7\pi}{18}\)
-0.93358043-69°\(\frac{-23\pi}{60}\)
-0.92718385-68°\(\frac{-17\pi}{45}\)
-0.92050485-67°\(\frac{-67\pi}{180}\)
-0.91354546-66°\(\frac{-11\pi}{30}\)
-0.90630779-65°\(\frac{-13\pi}{36}\)
-0.89879405-64°\(\frac{-16\pi}{45}\)
-0.89100652-63°\(\frac{-7\pi}{20}\)
-0.88294759-62°\(\frac{-31\pi}{90}\)
-0.87461971-61°\(\frac{-61\pi}{180}\)
-0.8660254-60°\(\frac{-\pi}{3}\)
-0.8571673-59°\(\frac{-59\pi}{180}\)
-0.8480481-58°\(\frac{-29\pi}{90}\)
-0.83867057-57°\(\frac{-19\pi}{60}\)
-0.82903757-56°\(\frac{-14\pi}{45}\)
-0.81915204-55°\(\frac{-11\pi}{36}\)
-0.80901699-54°\(\frac{-3\pi}{10}\)
-0.79863551-53°\(\frac{-53\pi}{180}\)
-0.78801075-52°\(\frac{-13\pi}{45}\)
-0.77714596-51°\(\frac{-17\pi}{60}\)
-0.76604444-50°\(\frac{-5\pi}{18}\)
-0.75470958-49°\(\frac{-49\pi}{180}\)
-0.74314483-48°\(\frac{-4\pi}{15}\)
-0.7313537-47°\(\frac{-47\pi}{180}\)
-0.7193398-46°\(\frac{-23\pi}{90}\)
-0.70710678-45°\(\frac{-\pi}{4}\)
-0.69465837-44°\(\frac{-11\pi}{45}\)
-0.68199836-43°\(\frac{-43\pi}{180}\)
-0.66913061-42°\(\frac{-7\pi}{30}\)
-0.65605903-41°\(\frac{-41\pi}{180}\)
-0.64278761-40°\(\frac{-2\pi}{9}\)
-0.62932039-39°\(\frac{-13\pi}{60}\)
-0.61566148-38°\(\frac{-19\pi}{90}\)
-0.60181502-37°\(\frac{-37\pi}{180}\)
-0.58778525-36°\(\frac{-\pi}{5}\)
-0.57357644-35°\(\frac{-7\pi}{36}\)
-0.5591929-34°\(\frac{-17\pi}{90}\)
-0.54463904-33°\(\frac{-11\pi}{60}\)
-0.52991926-32°\(\frac{-8\pi}{45}\)
-0.51503807-31°\(\frac{-31\pi}{180}\)
-0.5-30°\(\frac{-\pi}{6}\)
-0.48480962-29°\(\frac{-29\pi}{180}\)
-0.46947156-28°\(\frac{-7\pi}{45}\)
-0.4539905-27°\(\frac{-3\pi}{20}\)
-0.43837115-26°\(\frac{-13\pi}{90}\)
-0.42261826-25°\(\frac{-5\pi}{36}\)
-0.40673664-24°\(\frac{-2\pi}{15}\)
-0.39073113-23°\(\frac{-23\pi}{180}\)
-0.37460659-22°\(\frac{-11\pi}{90}\)
-0.35836795-21°\(\frac{-7\pi}{60}\)
-0.34202014-20°\(\frac{-\pi}{9}\)
-0.32556815-19°\(\frac{-19\pi}{180}\)
-0.30901699-18°\(\frac{-\pi}{10}\)
-0.2923717-17°\(\frac{-17\pi}{180}\)
-0.27563736-16°\(\frac{-4\pi}{45}\)
-0.25881905-15°\(\frac{-\pi}{12}\)
-0.2419219-14°\(\frac{-7\pi}{90}\)
-0.22495105-13°\(\frac{-13\pi}{180}\)
-0.20791169-12°\(\frac{-\pi}{15}\)
-0.190809-11°\(\frac{-11\pi}{180}\)
-0.17364818-10°\(\frac{-\pi}{18}\)
-0.15643447-9°\(\frac{-\pi}{20}\)
-0.1391731-8°\(\frac{-2\pi}{45}\)
-0.12186934-7°\(\frac{-7\pi}{180}\)
-0.10452846-6°\(\frac{-\pi}{30}\)
-0.08715574-5°\(\frac{-\pi}{36}\)
-0.06975647-4°\(\frac{-\pi}{45}\)
-0.05233596-3°\(\frac{-\pi}{60}\)
-0.0348995-2°\(\frac{-\pi}{90}\)
-0.01745241-1°\(\frac{-\pi}{180}\)
00
0.01745241\(\frac{\pi}{180}\)
0.0348995\(\frac{\pi}{90}\)
0.05233596\(\frac{\pi}{60}\)
0.06975647\(\frac{\pi}{45}\)
0.08715574\(\frac{\pi}{36}\)
0.10452846\(\frac{\pi}{30}\)
0.12186934\(\frac{7\pi}{180}\)
0.1391731\(\frac{2\pi}{45}\)
0.15643447\(\frac{\pi}{20}\)
0.1736481810°\(\frac{\pi}{18}\)
0.19080911°\(\frac{11\pi}{180}\)
0.2079116912°\(\frac{\pi}{15}\)
0.2249510513°\(\frac{13\pi}{180}\)
0.241921914°\(\frac{7\pi}{90}\)
0.2588190515°\(\frac{\pi}{12}\)
0.2756373616°\(\frac{4\pi}{45}\)
0.292371717°\(\frac{17\pi}{180}\)
0.3090169918°\(\frac{\pi}{10}\)
0.3255681519°\(\frac{19\pi}{180}\)
0.3420201420°\(\frac{\pi}{9}\)
0.3583679521°\(\frac{7\pi}{60}\)
0.3746065922°\(\frac{11\pi}{90}\)
0.3907311323°\(\frac{23\pi}{180}\)
0.4067366424°\(\frac{2\pi}{15}\)
0.4226182625°\(\frac{5\pi}{36}\)
0.4383711526°\(\frac{13\pi}{90}\)
0.453990527°\(\frac{3\pi}{20}\)
0.4694715628°\(\frac{7\pi}{45}\)
0.4848096229°\(\frac{29\pi}{180}\)
0.530°\(\frac{\pi}{6}\)
0.5150380731°\(\frac{31\pi}{180}\)
0.5299192632°\(\frac{8\pi}{45}\)
0.5446390433°\(\frac{11\pi}{60}\)
0.559192934°\(\frac{17\pi}{90}\)
0.5735764435°\(\frac{7\pi}{36}\)
0.5877852536°\(\frac{\pi}{5}\)
0.6018150237°\(\frac{37\pi}{180}\)
0.6156614838°\(\frac{19\pi}{90}\)
0.6293203939°\(\frac{13\pi}{60}\)
0.6427876140°\(\frac{2\pi}{9}\)
0.6560590341°\(\frac{41\pi}{180}\)
0.6691306142°\(\frac{7\pi}{30}\)
0.6819983643°\(\frac{43\pi}{180}\)
0.6946583744°\(\frac{11\pi}{45}\)
0.7071067845°\(\frac{\pi}{4}\)
0.719339846°\(\frac{23\pi}{90}\)
0.731353747°\(\frac{47\pi}{180}\)
0.7431448348°\(\frac{4\pi}{15}\)
0.7547095849°\(\frac{49\pi}{180}\)
0.7660444450°\(\frac{5\pi}{18}\)
0.7771459651°\(\frac{17\pi}{60}\)
0.7880107552°\(\frac{13\pi}{45}\)
0.7986355153°\(\frac{53\pi}{180}\)
0.8090169954°\(\frac{3\pi}{10}\)
0.8191520455°\(\frac{11\pi}{36}\)
0.8290375756°\(\frac{14\pi}{45}\)
0.8386705757°\(\frac{19\pi}{60}\)
0.848048158°\(\frac{29\pi}{90}\)
0.857167359°\(\frac{59\pi}{180}\)
0.866025460°\(\frac{\pi}{3}\)
0.8746197161°\(\frac{61\pi}{180}\)
0.8829475962°\(\frac{31\pi}{90}\)
0.8910065263°\(\frac{7\pi}{20}\)
0.8987940564°\(\frac{16\pi}{45}\)
0.9063077965°\(\frac{13\pi}{36}\)
0.9135454666°\(\frac{11\pi}{30}\)
0.9205048567°\(\frac{67\pi}{180}\)
0.9271838568°\(\frac{17\pi}{45}\)
0.9335804369°\(\frac{23\pi}{60}\)
0.9396926270°\(\frac{7\pi}{18}\)
0.9455185871°\(\frac{71\pi}{180}\)
0.9510565272°\(\frac{2\pi}{5}\)
0.9563047673°\(\frac{73\pi}{180}\)
0.961261774°\(\frac{37\pi}{90}\)
0.9659258375°\(\frac{5\pi}{12}\)
0.9702957376°\(\frac{19\pi}{45}\)
0.9743700677°\(\frac{77\pi}{180}\)
0.978147678°\(\frac{13\pi}{30}\)
0.9816271879°\(\frac{79\pi}{180}\)
0.9848077580°\(\frac{4\pi}{9}\)
0.9876883481°\(\frac{9\pi}{20}\)
0.9902680782°\(\frac{41\pi}{90}\)
0.9925461583°\(\frac{83\pi}{180}\)
0.994521984°\(\frac{7\pi}{15}\)
0.996194785°\(\frac{17\pi}{36}\)
0.9975640586°\(\frac{43\pi}{90}\)
0.9986295387°\(\frac{29\pi}{60}\)
0.9993908388°\(\frac{22\pi}{45}\)
0.999847789°\(\frac{89\pi}{180}\)
190°\(\frac{\pi}{2}\)